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Abstract

What determines the aggregate and distributional effects of new transportation
infrastructure? One key overlooked channel is the role that infrastructure policy
plays in changing the incentives of firms to enter, exit, and grow – in turn gener-
ating endogenous changes in local productivity. In this paper, we document and
quantify the importance of this channel by using detailed Mexican microdata and
a spatial general-equilibrium model that incorporates firm dynamics. Leveraging
random delays in the construction of highways, we empirically show that pro-
ductivity grows in places with better transportation infrastructure. Firms play a
critical role in driving this results: highways increase firms’ size, entry rates, sur-
vival rates, and total factor productivity. Then, by calibrating our model on census
data between 1998 and 2018, we find that new highways over this period increased
welfare and income by half a percent, similar to its costs in terms of GDP. More-
over, we find substantial spatial reallocation of workers and production. Nearly
half of these effects are explained by endogenous changes in local productivity,
which is driven by firm dynamics.
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1 Introduction

Transportation infrastructure is a key determinant of economic development because
it reduces trade costs and travel times for moving both goods and people, bolstering
GDP and welfare (Banerjee et al., 2020; Allen and Arkolakis, 2022). Over the past years,
economic geography models –the workhorse spatial framework to study transporta-
tion infrastructure– have emphasized the importance of locations’ characteristics to
understand the aggregate and distributional effects of such policies (Allen and Arko-
lakis, 2014; Redding and Turner, 2015). In this literature, locations are characterized
by two fundamental features: 1) amenities, which include housing, weather, cultural
attractions, and personal connections; and 2) local productivity, explaining why the
same worker may be more productive in one place than in another. While the litera-
ture has shed light on key components of local amenities, such as housing supply or
public goods congestion, it remains a challenge to understand what determines local
productivity, which is often viewed as an exogenous feature mostly subject to agglom-
eration forces.

In this paper, we argue that local productivity is shaped by firm dynamics – that is,
the endogenous processes of entry, exit, and growth; and, moreover, that such firm
dynamics are a key driver of the effects of new transportation infrastructure. We sup-
port this idea by answering the following two research questions: Does new trans-
portation infrastructure affect firm dynamics and local productivity? And, to what
extent do firm dynamics drive the aggregate and distributional effects of infrastruc-
ture policy? We tackle the first question empirically by using firm-level panel data
from Mexico and leveraging a natural experiment arising from highway planning and
execution nationwide over two decades. We answer the second question quantita-
tively by proposing an economic-geography model à la Allen and Arkolakis (2014),
extended with firm dynamics in the spirit of Melitz (2003).

Our central empirical result is that improvements in transportation infrastructure do,
in fact, lead to local productivity growth, and that this increase is connected to changes
in firm dynamics. These findings are based on two main data sources. First, the Mex-
ican Economic Census, a detailed panel data set covering the universe of firms across
all locations in the country. Second, the National Highways Network, a comprehen-
sive digitization of all paved roads in Mexico – allowing us to fully characterize the
dynamics of firms and the evolution of transportation infrastructure over a 20-year
period, from 1998 to 2018.

The main empirical challenge is reverse causality, a concern because it is plausible that
economic outcomes determine where the government chooses to build new highways.
To overcome this issue, we implement a delayed planned construction approach by dig-
itizing the placement and characteristics of 250 highways that were planned over the
period from 2007 to 2018. In Mexico, presidents present their national highway con-
struction plans when they begin their term, and they provide Congress with detailed
progress reports throughout their tenure. We use these reports to track the execution
status of the plans and their exact construction timing. The identifying assumption is
that, while placement of construction plans may be influenced by demographic, polit-
ical, and economic factors, the timing of actual execution, conditional on its previous
selection, is as good as random.
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Leveraging this source of variation, we estimate a staggered differences-in-differences
model following Callaway and Sant’Anna (2021) for two sets of construction plans
between 2007 and 2018. We categorize a firm as treated if it operates in a location close
to an executed construction plan and as not yet treated if it is close to a plan that was not
executed. We exclude from the sample all firms far from construction plans. Although
this treatment is binary, we show that it implies significant increases in market access
for treated locations.

According to our baseline point estimates, during the treatment period, workers in
treated locations increase their labor productivity by around 5%. This can be explained
by two mechanisms. First, firms in treated locations are themselves 2% more produc-
tive. Second, these firms also become 2% larger. Thus, local labor productivity grows
because more workers are employed by more productive firms. Firms also become
more likely to survive, generating persistence in the productivity composition of firms
in treated locations. After five years, both workers and firms still exhibit higher pro-
ductivity in treated locations, indicating long-lasting effects of highways. Moreover,
these effects are accompanied by higher entry rates, suggesting that potential entrants
also react to new transport infrastructure but take longer to respond.

We use a unified framework of economic geography with firm dynamics to theoreti-
cally decompose the benefits derived from improvements in transport infrastructure
into two parts: gains resulting from reduced trade costs and gains stemming from
local productivity growth driven by firm dynamics.

As is standard in static economic-geography models, our model features a country
with a large number of locations (e.g., cities or municipalities) that differ in exogenous
amenities and local labor productivity. These two characteristics, combined with the
geography of trade costs, determine the spatial distribution of workers, wages, and
outputs. The innovation of our model is that local productivity is given by the aver-
age of firms’ productivities. Thus, local productivity is essentially determined by the
number and composition of firms. Because firms’ decisions about entry and exit are
endogenous and dynamic, so is local productivity.

Our model highlights an important mechanism linking transport infrastructure, firm
behavior, and local productivity. Suppose that the government builds a new highway
to connect two important cities. Firms in locations along the road’s path will benefit
from greater market access. They will face lower trade costs, allowing them to sell
their products in more distant markets and to lower prices for their goods. This boosts
incumbent firms’ size and profits, and therefore, their survival probability. Potential
entrants observe the higher profitability of active firms, thus increasing the likelihood
that new firms indeed enter. Crucially, the more productive and larger the firm, the
higher its probability of entering and surviving. Thus, although the increase in mar-
ket access benefits all firms regardless of their productivity, it reinforces the entry and
persistence of large and productive firms. As a consequence, the productivity of lo-
cations along the new highway increases. The opposite is also the case; that is, the
productivity at locations not connected by the new highway stagnates or decreases.

We recover model fundamentals through a sequential combination of parameteriza-
tion, model inversion, and internal calibration to match the path of spatial equilibria
in the economic census from 1998 to 2018. We calculate the geography of trade costs
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by computing the minimum travel times between any pair of locations and paramet-
rically mapping them to iceberg costs. We determine the path of amenities and la-
bor productivity by inverting the system of spatial equilibrium equations. Intuitively,
differences in population identify differences in amenities and differences in wages
identify differences in local labor productivity. Finally, we recover the parameters
governing the distribution of firm-level productivity and the entry and exit processes
through internal calibration. The local firm size distribution identifies the productivity
distribution, and local entry and exit rates identify entry and exit costs.

The calibrated model shows that new highways in Mexico from 1998 to 2018 con-
tributed to real income and welfare growth, and that these benefits were unequally
distributed. It reveals that firm dynamics played a central role in these effects. In
line with the conclusions of previous, static studies (Allen and Arkolakis, 2014), our
findings document that new highways increased welfare by 0.44% and increased ag-
gregate real revenues by 0.64% in 2018; since Mexico invests annually 0.5% of its GDP
in transport infrastructure, our results suggests that the policy might be cost effective.

These aggregate effects hide substantial distributional effects. The areas that experi-
enced the largest investments in new transportation infrastructure were in three key
locations: those near the California and Texas borders, those close to the major ports
serving Asia and Europe, and those close to the Caribbean Sea. In these locations,
infrastructure improvements significantly reduced trade costs and improved market
access, enhancing the relative competitiveness of firms that could tap these benefits.
As a result, both real revenues and populations in these areas increased by nearly 10%,
largely at the expense of the central regions of the country that were largely bypassed
by highway infrastructure investments.

To understand how firm dynamics contributes to welfare and real income gains, we
compare our baseline results to those from a model without firm dynamics – that is,
one in which local productivity is exogenous and policy invariant. We find that pro-
ductivity gains driven by firm dynamics explain up to 46% of the overall real income
gains, and that the rest of the gains stem from reductions in trade costs. Moreover,
in a model without firm dynamics, the distribution of income gains is more uniform,
suggesting that firm dynamics are a force for spatial divergence.

Finally, we find that productivity grains are mostly driven by better firm selection.
This finding comes from decomposing local productivity gains due to highways into
two endogenous components: firm selection, as measured by average idiosyncratic
firm productivity, and the number of firms. We find that the firm selection accounts
for 77% of the productivity gains, and the increasing number of firms explains the
remaining 33%.

Overall, our quantitative results show that new highways in Mexico had a more signif-
icant impact on the spatial reallocation of economic activity than on aggregate welfare
and income. This finding conveys an important message to policymakers: transporta-
tion infrastructure can serve as a powerful tool for shaping the geographical distribu-
tion of economic activity by providing incentives for workers and firms to operate in
specific locations.
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Related literature and contributions

Our contribution is twofold. First, we offer new evidence on the effects of infrastruc-
ture on firm dynamics using panel data for all economic units in a developing country.
Second, we develop a spatial general equilibrium framework where endogenous firm
dynamics determine local productivity. In doing so, we establish a bridge between
empirical research on the effects of infrastructure on firms and the dynamic spatial lit-
erature that quantifies the aggregate and distributional effects of place-based policies.

Economic geography. This paper builds on the work of Allen and Arkolakis (2014);
Redding (2016); Allen and Arkolakis (2022). We extend their framework by incorpo-
rating firm dynamics. This approach endogenizes local productivity, allowing us to
decompose the income and welfare gains resulting from new transportation infras-
tructure into two component parts: the reductions in trade costs, and the growth of
local productivity.

Dynamic spatial models: Our paper relates to recent dynamic spatial frameworks.
Using an approach similar to that of Caliendo et al. (2019), we present a model with
trade and labor mobility; however, we allow for firm heterogeneity in a non-competitive
market. Similar to the work of Lindenlaub et al. (2022), we focus on firms; using an
approach similar to the one adopted by Kleinman et al. (2023), we also feature a dy-
namic spatial trade model with labor mobility. However, there are important differ-
ences in that Lindenlaub et al. (2022) abstract from the trade structure, and Kleinman
et al. (2023) assume a representative firm by location with exogenous productivity. In
contrast to both, we allow local productivity to be determined by the dynamics of het-
erogeneous firms in an internal trade environment. To the best of our knowledge, this
is the first paper to incorporate entry, exit, and growth dynamics of heterogeneous
firms in a spatial model with a realistic geography of trade costs, and then to validate
it with a natural experiment.

Effects of infrastructure on growth. This paper also relates to the micro-empirical
literature that measures the effects of transport infrastructure on local growth (Don-
aldson, 2018; Banerjee et al., 2020) and firm performance (Holl, 2016; Holl and Mari-
otti, 2018; Gibbons et al., 2019). Our contribution lies in providing new evidence for
a developing country by using novel firm-level panel data that cover the universe of
firms from all industries, both formal and informal, over a 20-year period. To the best
of our knowledge, this is the first paper in this literature that features data of such
comprehensive coverage for a developing country.

Furthermore, previous studies focusing on the effects of transport infrastructure on
firm-level productivity have relied on traditional estimation procedures such as those
used by Levinsohn and Petrin (2003) and Olley and Pakes (1992). However, these
measures are based on value-added production functions and confound the effects of
infrastructure on revenues and intermediate inputs. Our paper estimates firm produc-
tivity using a gross output-production function similar to that of Gandhi et al. (2020).
This approach reveals productivity gains stemming only from higher revenues, in line
with standard trade models.

Effects of infrastructure on firm dynamics. Evidence on the effects of infrastructure
on firm dynamics is scarce because of data limitations. Among these few studies,
Shiferaw et al. (2015) document that better transportation infrastructure favors firm
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entry, especially of large firms. Zhou (2023) also finds that locations with better ex-
posure attract larger firms, but that places far from highways have higher entry rates.
Our paper provides new evidence on entry and exit by documenting that responses
to the arrival of new infrastructure are faster for exits than for entries. Moreover, our
paper is the first one to show that while infrastructure does induce within-city firm
migration, the entry and exit impacts of infrastructure are not the result of firms mi-
grating across cities.

Effects of highways in the Mexican context. Other empirical studies have focused
on the impacts of road infrastructure in Mexico. Examples include Durán-Fernández
and Santos (2014); Pérez and Sandoval (2017); Blankespoor et al. (2017). These studies
have relied on location-level data. By contrast, by exploiting panel identifiers from
Busso et al. (2018), we show firm-level time variation for the first time. Moreover, our
study examines the impacts of a more detailed and denser highway network, and it ex-
ploits execution of presidential construction plans as a source of exogenous variation
to measure causal effects.

Structure of the paper. The rest of the paper proceeds as follows: Section 2 briefly
discusses the economic and infrastructural context of Mexico. Section 3 discusses the
sources, novelty and advantages of our data. Section 4 outlines our empirical approach
and presents our results. Section 5 shows our dynamic spatial general- equilibrium
model. Section 6 shows how we estimate the model and how the model fits the data.
Section 7 presents our quantitative results. Section 8 concludes.

2 Growth and infrastructure in Mexico

After the implementation of macroeconomic policies inspired by the Washington Con-
sensus in the 1990s and the North American Free Trade Agreement (NAFTA) in 1994,
Mexico has enjoyed an extended period of macroeconomic stability (Levy, 2018). Nev-
ertheless, in terms of real GDP, the nation has seen an average annual growth rate of
merely 2.4% between 1995 and 2015, resulting in a corresponding annual growth of
real GDP per capita of just 0.8%.

Economic growth has been not only slow but also unequally distributed across re-
gions. Between 1995 and 2015, states near the US border, such as Chihuahua and
Nuevo León, or in the central industrial belt such as Guanajuato and Querétaro, expe-
rienced rapid industrialization, resulting in annual real GDP growth rates exceeding
4%. Conversely, states in the southern region, such as Chiapas, Guerrero, and Oaxaca,
remained largely underdeveloped and achieved an average real GDP growth rate of a
mere 1% real over the same period.

A prevalent explanation for these disparities in economic performance is the unequal
distribution of high-quality transport infrastructure. Regions with limited access to
highways, railroads, and seaports are less appealing to firms that rely on high con-
nectivity to intricate input-output networks (Dávila et al., 2002). In this perspective,
highways are of unrivaled importance for Mexico, given that 83% of domestic cargo is
transported via road freight.1

1In addition, 96% of people traveling within the country use highways.
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For the past two decades, the federal government has acknowledged deficiencies in
the highways network and sought to address them through the sexennial National In-
frastructure Plan. In these plans, the government determines the objectives, location,
characteristics and budget of key, proposed highways. However, while most middle-
income countries allocate between 1% and 5% of annual GDP to new, inland trans-
portation infrastructure, Mexico’s investment is only around 0.5% of GDP (OECD,
2020). As a result, Mexico’s investments almost certainly insufficient to meet its trans-
portation needs.

The extent to which this deficiency in robust transportation infrastructure might con-
tribute to the country’s sluggish economic growth, despite the implementation of am-
bitious macroeconomic reforms, continues to be a subject of ongoing debate. More-
over, it remains an open question as to whether a policy of more ambitious investments
in road infrastructure in underdeveloped regions could potentially attract highly pro-
ductive firms and reduce economic disparities across the country.

3 Data

Our study relies on three primary sources of data. The first is the Mexican Economic
Census, which is conducted every five years. We rely on data collected from 1998
to 2018. These data have three important features: they cover the universe of estab-
lishments in Mexico, provide geolocations of establishments at the block level, and
they longitudinally link establishments. These features allow us to characterize firms’
dynamics across all locations. A second key data source is the National Highways Net-
work. We use data from the network over the period from 2004 to 2019. These data
allow us to determine all origin-destination travel times and to estimate trade costs
between locations. A third key source of data is the National Infrastructure Plans from
the presidential terms over the periods from 2007 to 2012 and 2013 to 2018. These
plans describe how each new administration intends to spend its infrastructure bud-
get. Here we provide next a brief overview of each data set’s characteristics. (Greater
details on data construction and cleaning procedures are provided in Appendix A.)

3.1 The Economic Census

Our main data source is the Mexican Economic Census, collected by the Mexican In-
stitute of Statistics and Geography (INEGI). Although the census is conducted at the
establishment level, throughout our paper we refer to these units as firms.2 The census
captures all formal and informal establishments of all sizes that produce goods or pro-
vide services in fixed facilities. The census includes such facilities in all locations with
a population larger than 2,500 people and for all 6-digit industries according to the
North American Industrial Classification System (NAICS). Excluded from the census
are agriculture and government (and street vendors of any industry). In this paper, we
focus on establishments in manufacturing, commerce, and service sectors. To leverage
the panel structure of the census, we use INEGI’s official firm identifiers to link the
waves in 2008, 2013, and 2018. To link the waves 1998, 2003, and 2008, we use the

2Levy (2018) documents that 99.7% of establishments are single-establishment firms.
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fuzzy linkage described in Busso, Fentanes and Levy (2018), which uses firm identity,
location, and industry to match units across census waves.3

Table 1 displays the coverage of the census, indicating that the number of firms in-
creased from 2.7 million in 1998 to 4.7 million in 2018, representing an implied annual
growth rate of 2.8%. Over the same period, the number of workers increased from 13.3
million to 24.8 million, with an implied annual growth rate of 3.1%. For reference, the
corresponding average GDP growth rate was 2.4%.

Table 1: Mexico’s Economic Census
Year Firms Workers 6-digit Populated

(millions) (millions) sectors locations
1998 2.72 13.31 720 2,566
2003 2.92 14.41 726 2,629
2008 3.66 18.14 732 2,801
2013 4.17 19.66 735 3,033
2018 4.73 24.82 741 3,234

Notes: Full census coverage.

Based on annual employment surveys, there were an estimated 39 million workers in
urban the locations that were included in the 2018 economic census, (i.e., places with
more than 2,500 people). Table 1 reveals that our data encompass almost 25 million
workers, representing 61.5% of the national workforce. The difference between these
figures is due to the government sector, which employs 4 million workers, and the
remaining 10 million workers who operate as street vendors.4

Locations. The Economic Census stratifies the territory into three primary levels: state,
municipality, and locality. While the boundaries and codes for states and municipality
remain constant, those for localities may change because they are based on demo-
graphic characteristics that may require redefining a given census tract’s boundaries.
To account for differences in census tracts, we establish our own fixed geography. We
accomplish this by defining a time-consistent set of locations, composed of localities
likely to belong to the same city. The procedure consists on generating a 1 km buffer
around the 7,136 localities and classifying contiguous buffers as the same location.
This procedure results in 3,248 locations consistent across all census waves. Panel (a)
in Figure 1 shows their geographic distribution.5

3.2 The National Highways Network

The second data source is the National Highways Network (Red Nacional de Carreteras).
This database, published by INEGI, consists of shapefiles including all national and
state paved roads and highways in Mexico at five points in time: 2004, 2011, 2014,
2018, and 2019. Panel (b) in Figure 1 illustrates this network in 2018. In 2004, Mex-

3The accuracy rate of this linkage algorithm is 95% (Busso et al., 2018).
4Table 1 also shows that the number of 6-digit sectors slightly increased from 720 6-digit industries

in 1998 to 741 in 2018. This is mostly due to revisions of the NAICS.
5Table 1 shows that the economic census increases its geographic coverage over time. The main

reason is that, as the population grows, more localities cross the 2,500-person threshold, and thus they
qualify to appear in the economic census.
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ico had 106,079 kilometers of paved highways, by 2019, the network reached 187,453
kilometers. 6

Figure 1: Locations and highways network in Mexico, 2018

(a) 3,248 locations (b) 187,000 km of highways

Notes: Panel (a) shows locations following our definition. Panel (b) all paved roads and highways
excluding within-city roads.

We use the data on highways to create a matrix of minimum travel times between any
two locations in the country to help estimate internal trade costs for our quantitative
model. With 3,248 locations defined, the size of our minimum-travel-times matrix is
3,248×3,248. To compute it, we implement the Dijkstra (1959) algorithm, which finds
the shortest path between two nodes in a network. We reduce the digitization bias
pointed out by Allen and Arkolakis (2014), by discretizing the space into a grid of
382,181 hexagons.7 Each hexagon is weighted by the maximum legal speed on the
highways that cross them. If two or more highways cross a hexagon, we use only the
highway with the top maximum speed. If a hexagon belongs to the interior of a city,
we assume that its speed is 30km/h. Hexagons carry information about how level
or steep the terrain is; this is considered in the computation. (Appendix A provides
additional details.)

Panel (a) of Figure 2 shows the minimum travel times required to drive to Mexico City
from the 2,457 other municipalities in the country. Assuming no traffic jams, 70% of
municipalities can be reached from Mexico City within 6 hours; 20% take between 6
hours and half a day, and the remaining 10% require at least half a day. The most
remote location is a 52-hour drive from Mexico City.

Panel (b) of Figure 2 illustrates the percentage change in time required to reach Mexico
City during the period 1998-2018. The time needed to reach Mexico by road decreased
by less than 10% over that period. For nearly one-third of Mexico’s municipalities the
time needed to reach the capital declined by 10% and 20%. For roughly one-fifth of
the municipalities, the time needed to drive to the capital decreased by more than 20%.
The regions that saw the most significant improvements, shown in green on the map,

6The comparable network in France is close to 1 million kilometers (Autoroutes nationales, départe-
mentales et communales). To put this into perspective, France at that time had 14 meters of highway per
capita, 10 times the 1.4 meters per capita figure for Mexico..

7The edge length is 1.22 kilometers. The H-resolution is 7 according to Uber’s Hexagonal Hierar-
chical Spatial Index.
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Figure 2: Estimated minimum driving times to Mexico City

(a) Estimated minimum number of hours needed
to drive from municipalities to Mexico City (2018)

(b) % decrease in estimated minimum number of
hours to drive from municipalities to Mexico City
(1998-2018)

Notes: Maps subdivided into municipalities.

include those near the Caribbean Sea, the California and Texas ports of entry, and the
two primary seaports connecting the country to Europe and Asia.

3.3 The National Infrastructure Plans

Our third data source is the National Infrastructure Plans. These data contain 250 con-
struction plans from 2007 to 2018. They provide a source of quasi-natural variation
that we utilize in our empirical analysis. The plans originate from two distinct pres-
idential terms: 175 from the Felipe Calderón administration (2007-2012) and 75 from
the Enrique Peña Nieto administration (2013-2018).

We use geographical software to locate all 250 plans on a map. If plans are executed,
their locations can be easily pinpointed on a map since they appear in subsequent
waves of the highway network shapefiles with updated characteristics. However, in
cases where the plans are not executed, we infer their locations based on the plan
descriptions. Subsequently, we draw these hypothetical highways on our shapefiles
and assign them attributes such as width, number of lanes, and maximum speed based
on the technical specifications provided in the construction plans.

To accurately document plans’ execution and timing, we relied on annual progress
reports from the Mexican Transportation Ministry to Congress. These reports pro-
vide detailed information on the number of kilometers built each year, the amount of
money spent, and the year of project completion. It is important to note that highway
construction plans may or may not be executed for various reasons. The actual ex-
ecution of a project could be influenced by budgetary changes, technical challenges,
opposition from the local population, or other political considerations. Unfortunately,
the reports do not specify the reasons why a given plan was not built. In the empir-
ical section, we examine whether plan execution and timing can be predicted by the
characteristics of adjacent cities.

Table 2 presents the execution status of the construction plans and their timing. For
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Table 2: Construction plans and year of execution

(a) 2007-2012 Administration (b) 2013-2018 Administration
Executed Execution year Total Executed Execution year Total

No 115 No 33

Yes

2007 2

Yes

2008 11 2013 9
2009 9 2014 10
2010 7 2015 4
2011 10 2016 9
2012 21 2017 10

Total 175 Total 75

the administration over the period from 2007 to 2012, 40% of the 175 construction
plans were fully executed. Half of these plans were completed within the first four
years of the presidential term, while the remaining half were finished in the last two
years. Similarly, for the administration over the period from 2013 to 2018, 56% of the
75 construction plans were completed, with half of them being finished in the first 2
years.

Figure 3: The construction plans.

(a) Plans 2007-2012 (b) Plans 2013-2018

Notes: Green lines denote construction plans that were completed. Red lines denotes plans that were
not built.

Figure 3 shows the geographical distribution of plans according to their execution
status. The majority of states were crossed by at least one plan during the first admin-
istration. In contrast, most plans during the second administration were concentrated
in the southern region of the country.

Figure 4: Overlap construction plans and Economic Census waves

1998 2003 2008 2013 2018 census waves

plans 2007-2012

plans 2013-2018
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We combine these construction plans with economic census data. As shown in Figure
4, there is no perfect temporal overlap between the two databases. We leverage this
fact to characterize pre-treatment, treatment, and post-treatment periods. Clearly, the
censuses in 1998 and 2003 serve as pre-treatment periods for both sets of construction
plans, and the censuses from 2008 to 2018 serve as staggered treatment periods.

4 Empirical evidence

We document how improvements in transportation infrastructure affect local labor
productivity and firm dynamics. We first combine data from the Mexican Economic
Census with information from the National Highways Network, and then leverage the
timing of the execution of presidential construction plans as a source of plausibly ex-
ogenous variation to estimate a staggered differences-in-differences regression model,
as in Callaway and Sant’Anna (2021).

Measuring the effects of infrastructure on economic outcomes is a challenging task for
two main reasons. First, the placement of infrastructure projects is not random; most
of the time, economic or political considerations motivate the placement. Second, in-
frastructure projects, such as highways, may produce spillover effects because such
projects are part of a larger network that can benefit all locations to varying degrees.
Our empirical approach explicitly addresses the first problem. However, in our base-
line specification, we do not account for spillover effects. If spillovers do exist, our
estimates would represent a lower bound.8

4.1 Main specification

The main goal of our empirical section is to document that when firms are exposed to
better transport infrastructure, their performance improves, and so do their chances of
entering and surviving. Moreover, we are interested in disentangling whether these
effects stem from the actual construction or simply the announcement of new high-
ways. Finally, we aim at determining if highways have only a temporary effect on
firms or if they persist in the medium-run. To capture these effects we rely on a stan-
dard differences-in-differences model with staggered treatment timing. The regression
equation is of the form:

yn,i,t = αi + αt + γ′Xn,i +
min∑
e=1

βpersist.e ·Di,t−e + β0 ·Di,t +
max∑
e=1

βanticipe ·Di,t+e + εn,i,t (1)

In (1), the index n denotes the firm, i denotes the location, and t denotes the period.
On the left-hand side, yn,i,t represents the outcome of interest. On the right-hand side,
the coefficient αi indicates location and αt corresponds to time fixed effects. Xn,i is
a vector of observed control variables. The error term εit is clustered at the location
level, at which the treatment occurs as is standard in the literature.

The treatment variable,Dit, is defined at the location level i. It is a binary indicator that

8We are working on a robustness check to account for spillover effects by specifying counterfactual
infrastructure shocks as in Borusyak and Hull (2020).
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takes the value of one for firm n if its location is exposed to the execution of a construc-
tion plan at time t and zero otherwise. The model includes three conceptually different
treatment effects. The set of coefficients βpersist.e captures the effects of the treatment be-
fore period t on current outcomes. The coefficient β0 measures the contemporaneous
treatment effect at t. Finally, the set of coefficients βanticip.e reflects possible anticipatory
effects at t of future treatments. We provide a detailed description of Dit below.

For the coefficients βpersist.e , β0, β
anticip.
e to be identified, the model relies on the follow-

ing assumptions. The first concerns the irreversibility of the treatment; that is, once a
highway is built, it cannot be destroyed. This assumptions ensures that the three
groups of coefficients are separately identified. The second concerns conditional parallel
trends based on a never-treated group; that is, only firms in a location with the same
characteristics would follow the same trend in the absence of treatment. This assump-
tion guarantees that the measured effects can have a causal interpretation. Following
Theorem 1 in Callaway and Sant’Anna (2021), these assumptions imply that we can
identify all group-time average treatment effects (ATE).

4.2 Outcomes

In this section we provide a detailed definition of our outcomes of interest: value
added per worker, firm-level total factor productivity (TFP), firm size, and firm entry
and exit rates.

Value added per worker. We calculate this by dividing firm value added by the num-
ber of workers. Value added is defined as the total revenue derived from all commer-
cial activities of the firm, minus intermediate expenditures, such as raw materials and
electricity. The definition of total workers includes blue- and white-collar employees,
as well as owners, outsourced personnel, and piece-rate workers. We represent this
metric logarithmically as log(V A/L). This measure offers the advantage of being con-
sistent with models that use standard frameworks in which the production function is
constant returns to scale, and it relies solely on labor.

Revenue productivity. We measure TFP as in Gandhi et al. (2020) (henceforth GNR).
This measure assumes a Cobb-Douglas production function of the form y = TFP ·
kαs l

β
sm

γ
s , where y represents gross output, k is the capital stock, l is total workers and

m is the intermediate inputs. The three input elasticities, αs, βs, γs, are assumed to be
the same for all firms within the same three-digit industry s. We express this outcome
logarithmically as log(TFP )GNR. The main advantage of this productivity measure is
that it attributes all increases in TFP to higher revenues while holding inputs constant.
Traditional value added-based production functions such as Olley and Pakes (1992);
Levinsohn and Petrin (2003); Ackerberg et al. (2015) cannot disentangle whether an
increase in TFP is due to higher revenue or reductions in intermediate input expen-
ditures. It is important to note that log(TFP )GNR is a revenue productivity measure.
This means that it cannot disentangle whether a higher TFP is due to an increase in
prices or an increase in physical productivity. This issue can be solved by exploiting
firm-level prices; unfortunately, such data are unavailable in the Economic Census.

Firm size. This is simply the sum of all blue- and white-collar workers, owners, and
outsourced and piece-rate workers. We denote this outcome in logs as log(L). We
consider owners and family members as part of production workers since most firms
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in Mexico operate exclusively with type of workers in profit-sharing agreements.

Average wage. This is measured as the total wage bill divided by the number of work-
ers. We express this outcome in logarithms as log(w). In cases in which firms do not
report the wage bill because they operate under profit-sharing agreements that are
commonly used by most informal firms we employ the wage imputation method de-
scribed in Busso et al. (2012). This procedure involves assigning missing wages to be
the same as those in firms from the same state, six-digit industry, and of similar size.

Entry and exit. For entry, this is a dummy variable that takes the value of one if the
firm appeared for the first time in the census wave, and zero otherwise. For exit, it
takes the value of one if the firm is observed for the last time and zero otherwise.

4.3 Treatment and sample

Treatment. The treatment variable, denoted as Di,t, is an index function that equals
one if the firm operates close to a fully executed construction plan and zero otherwise.
A location is considered to be close to a construction plan if it overlaps with a buffer
of radius B around the plan. For robustness checks, we consider different values for
B, specifically, 5, 10 and 15 kilometers.

Figure 17 in Appendix B illustrates treated (in green) and not-yet-treated (in red) loca-
tions for a specific buffer size B. Notice that the treatment is not defined for locations
that do not overlap with any buffer; this will affect the sample size.

Sample. The sample includes only locations overlapping with construction plans. Ta-
ble 3 shows the number of locations in the sample for B = 5 kilometers. It shows that
771 of the 3,248 locations overlap with construction plans from 2007 to 2012. Among
them, 259 intersect with plans that were fully executed before 2012, and another 512
intersect with plans that were not undertaken. Similarly, for the construction plans
envisioned over the period from 2013 to 2018, 457 locations overlap with construction
plans; among them, 278 were fully executed before 2018. Table 14 in the appendix
shows how the number of locations in the sample increases when we use a larger
buffer size.

Table 3: Locations in sample and treatment group
Plans period 2007-2012 2013-2018
With plans 771 457

With out plans 2,475 2,789
Total locations 3,246 3,246

Executed 259 278
Not executed 512 179

Total locations 771 457

Although the Economic Census covers from 2.7 million firms in 1998 to 4.7 million in
2018 (see Table 1), we do not include all of them in our empirical estimation. Our sam-
ple is limited to firms in locations overlapping with construction plans. For instance,
considering the construction plans from 2013 to 2018, Table 4 shows that 2.73 million
firms in 2018 are in the sample. Among them, 1.26 million are in the treatment group.
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Table 15 in the appendix shows how the number of firms in our sample increases as
we increase the buffer size.

Table 4: Firms in the sample and treated group
Plans period 2007-2012 2013-2018

Census Sample Treated Sample Treated
1998 2.09 1.43 1.65 0.73
2003 2.23 1.51 1.75 0.77
2008 2.72 1.82 2.14 0.97
2013 3.06 2.04 2.43 1.12
2018 3.43 2.26 2.73 1.26

Notes: Treated means that the firm belongs to the treatment group, not that it was treated at that period.

4.4 Validity

The validity of our empirical approach relies on the timing of execution of construction
plans being orthogonal to economic outcomes. We provide three tests to show that this
source of variation is indeed as good as random.

The first test evaluates whether execution of plans can be predicted. We show that
while the geographical assignment of construction plans is correlated with demo-
graphic, economic, and political characteristics, the actual execution and the timing
is not. To do this, we regress, at the location level, an index variable denoting if a
location is close to a construction plan, and whether it was executed, on local char-
acteristics. Column (1) from Table 16 (Appendix B) shows that certain areas are more
likely to be targeted by a construction plan. These areas are those that have larger pop-
ulations and higher value added per worker, and those that voted for the opposition
party in the previous presidential election. Column (2), however, shows that none of
these characteristics matter for the eventual execution of the plan.

The second test provides a balance table to study whether treated and untreated lo-
cations differ in characteristics at baseline. We find that although there are some dif-
ferences in levels, there are none in growth rates. Table 17 (Appendix B) shows that
treated and untreated groups are similar in population, average firm size, average
firm productivity, and industrial composition. Firms in treated locations, however,
hire more formal workers on average, and they are more capital intensive. If we focus
on growth rates, they don’t seem to evolve differently, which suggests that existing
differences are constant across time.

The third test addresses whether the parallel-trends assumption holds. As we show in
the following section (tables 5 and 6), there are no statistically significant pre-trends in
our outcomes of interest.

Additional concerns about the validity of our approach are that construction plans
may only capture minor improvements in the highways network, and that most of
the effects that we measure may be driven by other infrastructure projects tied to the
plans, such as industrial parks or housing developments. In Table 18 (Appendix B) we
provide evidence that the construction plans have a significant effect market access.
Execution of construction plans imply an increase in market access of 0.07%. Because
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the baseline increase was on average 0.13%, the implied gains derived from plan exe-
cution are 53%.

4.5 Empirical results

To derive our baseline results we estimate two separate event-study models following
Callaway and Sant’Anna (2021). One is for the 2007-2012 construction plans, and the
other is for the 2013-2018 plans. Regressions are estimated at the firm level, assuming
that the data are repeated cross-sectional.

Tables 5 and 6 show our baseline results for a buffer size B = 5km. As is good practice
in the literature (Baker et al., 2022), we show first our estimates without covariates.
Appendix B shows robustness checks that include firm- and location-level covariates;
we separately estimate the model for tradable and non tradable goods, and for differ-
ent buffer sizes.

Table 5: Baseline results. Construction plans 2007-2012

(1) (2) (3) (4) (5) (6)
log(va/L) log(TFPR)GNR log(L) log(w) Entry Exit

β−1 -0.0167 -0.0041 -0.0014 -0.0059 0.0083 0.0074
s.e. [.0228] [.0135] [.0084] [.0056] [.0069] [.0072]

β0 -0.0017 0.0044 -.0139** -0.0015 0.0143 -.0169**
s.e. [.0158] [.0056] [.0063] [.0057] [.0101] [.007]

β1 .0653*** .0174** -0.0049 -.0111** .0158*** -.0329**
s.e. [.0197] [.0082] [.0098] [.0054] [.0053] [.0129]

Controls No No No No No No
Obs. 7,060,649 7,060,649 7,060,649 7,060,649 7,060,649 7,060,649

Notes: Standard errors are in brackets. ∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1. The sample includes all firms
from 1998 to 2018. It excludes firms with value added or capital levels smaller than zero.

Construction plans 2007-2012. Table 5 shows that, for all outcomes of interest, β−1 is
not statistically different from zero, which suggests that firms did not react to the treat-
ment before they were exposed, and thus, that the parallel-trends assumption holds.
According to the estimated β0, there is no evidence of a contemporaneous effect of con-
struction plan execution on labor productivity and firm TFP. There is a negative effect
on firm size, but this does not have a significant effects on wages. Though there are no
contemporaneous effects on firm entries, there are effects on plan exits; plan execution
decreases firm exits by 1.69 percentage points. Finally, the coefficients β1 capturing
effects of highways five years after their construction, show a 6.5% increase in labor
productivity and a 1.74% increase in firm TFP. Firm size is not affected. Wages slightly
decrease. Firm entries increase by 1.6 percentage points, and firm exits decrease by 3.3
percentage points.

In summary, although the results for the 2007-2012 construction plans are in line with a
story of labor and firm productivity gains and changes in firm dynamics due to better
transport infrastructure, the results also suggest that these effects may take time to
unfold.
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Table 6: Baseline results. Construction plans 2013-2018

(1) (2) (3) (4) (5)
log(va/L) log(TFPR)GNR log(L) log(w) Entry

β−1 -.0641** -0.0073 -0.0028 0.002 0.0086
s.e. [.0257] [.0075] [.0076] [.0048] [.0055]

β0 .0547** .0179** .0157* .0113** 0.0018
s.e. [.0226] [.0074] [.0092] [.005] [.0079]

β1 -0.0013 0.0094 .0335*** .0146** .0238*
s.e. [.0231] [.0112] [.0109] [.0065] [.0124]

Controls No No No No No
Obs. 6,375,668 6,375,668 6,375,668 6,375,668 6,375,668

Notes: Standard errors are in brackets. ∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1. The sample includes all firms
from 2003 to 2018. The sample excludes firms with value added or capital levels smaller than zero.

Construction plans 2013-2018. Table 6 shows that there are no anticipatory effects for
all outcomes of interest, except one, log(va/L). The estimates for β0 suggest signifi-
cant contemporaneous effects on productivity and firm dynamics. When construction
plans are executed, local labor productivity increases by 5.5%. This increase is cou-
pled with an 1.8% rise in firm TFP and a 1.6% increase in firm size. There is a positive
but noisy effect on average wages. There is no effect on firm entry.9 One period after
the treatment – that is, five years – neither workers nor firms in treated locations con-
tinue to be more productive. However, they become even larger (3.3%), and firm entry
increases by 2.4 percentage points.

In summary, the results for 2013-2018 construction plans are in line with our hypoth-
esis that better transportation infrastructure increase local labor productivity and that
this is linked to more productive firms and changes in firm dynamics, notably, higher
survival and entry rates. Although the effects on productivity are not persistent, ef-
fects on firm dynamics are.

4.6 Robustness checks

Regressions by sector. In Appendix B we show the results estimated separately by
three broad sectors: manufacturing, commerce and services. Table 19 shows the re-
sults for the 2007-2012 construction plans. The contemporaneous negative effects of
highways on exit are present in all sectors although they are stronger in manufactur-
ing and services (2 percentage points) than in commerce (1.4 percentage points). As in
the aggregate case, the effects on productivity and firm dynamics appear one period
after the treatment. The largest increases in labor productivity (8.4%) and firm TFP
(3.6%) are in the commerce sector. Higher entry rates are present only in the services
sector and lower exit in all. Overall, the sector that has the strongest response to new
transportation infrastructure is commerce. This is not surprising since this is the sector
for which trade costs are more relevant for input and output markets.

9Exit is not defined for this regression as the Census 2023 was not yet available at the time of this
writing.

16



Table 20 shows the results for the 2013-2018 construction plans. Results by sector show
that the contemporaneous positive effects on productivity are driven mostly by the
commerce and services sectors and not by manufacturing. Again, there are no con-
temporaneous effects of firm entry. One period after the treatment, there are negative
effects on revenue productivity for manufacturing firms, no effects for commerce, and
positive effects for services. Higher entry five years after the treatment is only present
in the commerce sector.

Controls. Tables 21 and 22 in Appendix B show that our results are robust to adding
time-invariant controls that take the Economic Census 1998 and the Population Census
2000 as baseline. For the 2007-2012 construction plans, point estimates preserve the
sign, are slightly larger, and increase their statistical significance. A similar pattern is
observed for the 2013-2018 construction plans.

Different buffer sizes. Tables 23, 25, 24 and 26 in Appendix B show that our results
are robust to larger buffer sizes. Focusing on the 2013-2018 construction plans, as the
buffer size increases, most point estimates decrease and some become statistically zero.
This is consistent with the fact that as we increase the buffer size, we also increase the
sample and the risk of considering more distant locations as treated when they are
only weakly affected by the construction plans.

Firm mobility. A common source of bias when studying firm entry and exit is firm
relocation. When relocations are not tracked in the data, address changes are counted
as an exit and then recounted as a new entry, biasing both rates upwards. Since we can
track firm location changes across the entire country in the census, we verify whether
new transport infrastructure incentivizes firms to relocate. In Appendix B we show
that although firm relocation can be substantial, as much as 5% of all surviving firms,
they mostly move within a given city or commuting zone; thus, this does not bias our
results because our treatment is defined at the location level. Interestingly, we find
that new transport infrastructure does affect within-location firm relocation.

4.7 Discussion

Our findings have shown that new transport infrastructure has a positive effect on lo-
cal labor productivity, and that this increase is associated to an increase in firm TFP.
The positive effects of infrastructure on firm-level productivity we find are in line
with those of previous findings (Holl, 2016; Holl and Mariotti, 2018; Gibbons et al.,
2018). Labor and firm productivity may increase for many reasons. For example,
average firm TFP can stem from better firm selection or from agglomeration external-
ities (Combes et al., 2012). Wan and Zhang (2017); Lee (2021); Xu and Feng (2022)
provide empirical evidence that new highways incentives firm agglomeration, and
Ahlfeldt and Feddersen (2018) find that infrastructure is a driver of better firm selec-
tion. Though our empirical study cannot disentangle selection from agglomeration
effects, our evidence on firm entry and exit suggest that firm selection plays an impor-
tant role in the overall increase in productivity.

The findings also show that new infrastructure affects firm dynamics – that is, it im-
pacts the processes of firm entry, exit, and growth. The literature has found mixed evi-
dence regarding infrastructure’s impacts on the entry process. Audretsch et al. (2017);
Gibbons et al. (2019) find that the number of firms in places with better access to in-
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frastructure increases, mostly driven by entry; however, Chang and Zheng (2022) find
no effects on entry and a decline in the number of firms in locations exposed to new
transport infrastructure. In general, we do not find statistically significant effects on
entry in the short run. However, we find positive effects one period after the treat-
ment (five years later). Research documenting the effects of transport infrastructure
on firm exit is scarce. We find negative effects of new highways on firm exit, which
is consistent with a story in which better highways decrease trade costs and increase
firm profitability and chances of survival.10

In the following section, we propose a model that rationalizes why new transportation
infrastructure distorts firm dynamics, and how this mechanism determines location-
level productivity. In the model, local labor productivity is directly determined by
the composition for firms; thus, firm selection is an important channel that drives the
effects of better infrastructure on economic outcomes. Although we do not model
agglomeration forces directly, the model is flexible enough to account for them at no
computational cost (as described in Appendix C).11

5 Model

In Section 4, we documented that new highways increased firm-level TFP, firm entry,
and the likelihood of a firm’s survival. These positive effects translate into higher local
labor productivity. In this section, we outline a theoretical framework that allows us
to interpret these results and study the implications for aggregate output, welfare, and
the spatial distribution of economic activity. To do this, we build upon an economic
geography model à la Allen and Arkolakis (2014) to incorporate firm dynamics by
which we mean the endogenous processes of entry, exit, and growth of heterogeneous
firms in the tradition of Melitz (2003).

5.1 Geography

Time is discrete and indexed by t. In each period, there exists a fixed set of locations
in the country denoted by J = 1, 2, . . . , J .12 Locations in this economy are understood
as local labor markets such as cities or commuting zones. They are interconnected
by a network of highways that can be improved by building new routes or upgrading
existing ones. Improvements in the highways network can reduce the minimum travel
times between any two locations.13 We denote the matrix of minimum travel times
between locations i and j as {Ti,j,t}i,j∈J .

We assume that the matrix of minimum travel times is sufficient to determine a geog-
raphy of bilateral trade costs, denoted by {τi,j,t}i,j∈J .14 For now, we remain agnostic

10See Grover Goswami et al. (2024) for the effects on competition. See Baum-Snow et al. (2024) for
firm to location productivity pass-through.

11The main challenge is identification. It is seldom straightforward to disentangle the parameter
governing agglomeration externalities from baseline productivity.

12For endogenous city formation see Gaubert (2018).
13We rule out the Braess’s paradox stating that adding one or more roads to a road network may

slow down overall traffic flow through it. A paper featuring congestion is Allen and Arkolakis (2022).
14This assumption is reasonable in the absence of internal tariffs.
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about the exact function that maps travel times to trade costs. From now on, for all
variables with subscript (i, j), (i) denotes the origin, and (j) denotes the destination.

5.2 Households

At time t, the country is inhabited by an exogenous number of perfectly mobile house-
holds, denoted as L̄t. Households decide where to reside and how much to consume.
Each household is endowed with one unit of labor, which is inelastically supplied to
the local labor market at a wage rate of wi,t. The household consumes a basket of vari-
eties cj,i,t(n) produced by firm n in location j. These varieties form a composite good
Ci,t aggregated à la Dixit and Stiglitz (1977):

Ci,t =

∑
j∈J

∑
n∈Mj,t

cj,i,t(n)
σ−1
σ

 σ
σ−1

(2)

Where σ > 1 is the elasticity of substitution across all varieties. The price of a variety
cj,i,t(n) is denoted by pj,i,t(n). Utility is derived from this basket of goods and local
amenities ui,t according to the function:

Ui,t ≡ Ci,t · ui,t (3)

Amenities rationalize why households move to certain places despite receiving lower
wages. These considerations include good weather, cultural attractions, family ties,
and birthplace preferences (Zerecero, 2021). The consumption basket {cj,i,t(n)} maxi-
mizes (3) subject to the budget constraint:∑

j∈J

∑
n∈Mjt

pj,i,t(n)cj,i,t(n) = wi,t + di,t (4)

Where di,t denotes the dividends paid by the firms to households. We assume that all
profits are collected by a central fund and then redistributed. Using the approach un-
dertaken by Chaney (2008), each household owns wi,t shares of the fund, thus, income
is proportional to the local wage and does not affect household’s location choices. For
the sake of simplicity in notation, we omit dividends from the equations.15

From the household’s utility-maximization problem we can show that the instanta-
neous, indirect utility depends on the real wage wi,t

Pi,t
and local amenities ui,t as follows:

Ui,t =
wi,t
Pi,t
· ui,t (5)

15Under this assumption, we can show that the actual income is σ
σ−1wi,t which proportionally shifts

welfare Ui,t for all i.
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Where Pi,t is the standard price index of location i, defined as:

Pi,t ≡

∑
j∈J

∑
n∈Mj,t

pj,i,t(n)1−σ

 1
1−σ

(6)

Aggregate Marshallian demand of the Li,t households in location i for a variety n pro-
duced at location j is:

cj,i,t(n) = pj,i,t(n)−σwi,tLi,tP
σ−1
i,t (7)

According to this demand function, the price elasticity is σ and wi,tLi,tP
σ−1
i,t is a local

demand shifter that proportionally raises demand for all local varieties. The demand
function implies that households demand a positive amount of all varieties as long as
there exists a firm willing to produce them.16

Households’ location choice. Households are freely mobile and decide where to live
at the beginning of every period. The value of living at location i at time t is:

Wi,t = Ui,t + βEΩ [Wt+1|Ωt] (8)

Where Ωt is the aggregate state of the economy at time t, which includes all infor-
mation about the distribution of prices and quantities across locations. Households
discount the future at rate β ∈ (0, 1) forming beliefs EΩ through expectations that may
depart from rational. The continuation value is Wt+1, defined as:

Wt+1 = max
j∈J
{Wj,t+1} (9)

The absence of a moving cost in the continuation value reflects the fact that households
can freely move from location i to j. The location choice is then:

i = argmax
j∈J

Wj,t (10)

5.3 Firms

Technology. In period t, there are Mi,t heterogeneous, risk-neutral firms at location i.
They use labor to produce a single variety, indexed by n ∈ Mi,t, with the following
constant returns to scale technology:

yi,t(n) = ψi,t(n) · li,t(n) (11)

Where firm-level productivity, ψi,t(n), is separable in two parts as:

ψi,t(n) = zi,t · si(n) (12)

16It is straightforward to extend this framework to many sectors as in Asturias et al. (2019). This
will imply having different elasticities within and across sectors. Arkolakis et al. (2019) show that
heterogeneous markups may imply smaller welfare gains from trade.

20



Where zi,t is a random location-specific productivity shifter.17 It rationalizes why the
same firm would exhibit different labor productivity when situated in a different lo-
cation or when experiencing distinct time periods. On the other hand, si(n) is the
idiosyncratic productivity of a firm, which is time invariant and drawn before entry.

Profit maximization. Firms operate in a monopolistic competition market and sell
their products to all locations. When firm n in location i serves market j, it chooses
labor, output, and prices to solve:

max
pi,j,t(n),yi,j,t(n),li,j,t(n)

πi,j,t(n) = pi,j,t(n)yi,j,t(n)− wi,tli,j,t(n) ∀j ∈ J

subject to (7)
(13)

Consumers at j pay pi,j,t(n) = τi,j,t · pi,t(n), where pi,t(n) is the price at the location of
origin. At the optimum, firms will price a constant markup over the marginal cost.
That is:

pi,j,t(n) =

(
σ

σ − 1

)
τi,j,twi,t
ψi,t(n)

(14)

Optimal labor and quantities follow from (14) and the demand and production func-
tions. Equation (14) implies that all differences in prices of the variety n are fully
explained by differences in trade costs; so any reductions in trade costs will be fully
passed on to consumers in the form of a lower price.

Definition 1. Location’s i market access is:

mai,t ≡ σ̃
∑
j∈J

τ 1−σ
i,j,t wj,tLj,tP

σ−1
j,t (15)

where σ̃ ≡
(

σ
σ−1

)1−σ.

Proposition 1. Firm’s (total) optimal labor demand and profits are:

li,t(n) = ψi,t(n)σ−1 · w−σi,t ·mai,t (16)

and
πi,t(n) =

1

σ
· ψi,t(n)σ−1 · w1−σ

i,t ·mai,t (17)

Proof. See Appendix C.

According to (16) and (17) static optimal decisions of firms depend only on their pro-
ductivity, local wages, and market access.18

Incumbent’s problem. Firms decide to stay or exit after production takes place and
profits are realized. The value of an incumbent firm in location i producing variety n
is:

Vi,t(n)I = πi,t(n) + βEΩ [Vi,t+1(n)|Ωt] (18)

17This shifter can be further decomposed by making assumptions on, for instance, agglomeration
externalities (Combes et al., 2012).

18Firms have no local labor market power; thus they take wages and market access as given. See
Azkarate-Askasua and Zerecero (2022) for local labor market power.
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Where the continuation value, normalizing the outside option for entrepreneurs to
zero for all n, is:

Vi,t+1(n) = max{Vi,t+1(n)I − fi,t(n), 0} (19)

Here, fi,t(n) is a random operating cost drawn at the end of period t. This operating
cost provides the rationale that can explain why there is not a hard productivity cut-off
for exiting firms in the data; some productive firms exit, and some unproductive firms
stay in the market.

Entrants’ problem. At the end of period t, exogenous MPE
i,t potential entrants draw

idiosyncratic productivity shocks {si(n)}n∈MPE
i,t

, then, determine the value of entering
and starting operations in t+ 1:

Vi,t(n)E = βEΩ

[
Vi,t+1(n)I |Ωt

]
(20)

Where ei,t(n) is a random entry cost observed before making the entry decision. Nor-
malizing the outside option to zero, the potential entrant decides to enter in t+ 1 if:

Vi,t(n)E − ei,t(n) > 0 (21)

The entry shock ei,t(n) explains why certain unproductive firms might enter the mar-
ket while some highly productive ones might not. As the productivity draw increases,
so does the value of entering the market, making it more likely for a firm to choose to
enter.

5.4 Local labor productivity

In standard economic-geography models, production in a location takes place in a sin-
gle representative firm with a production function of the form Yi,t = Ai,tLi,t, where
Ai,t is local labor productivity and is exogenously given and, therefore, policy invari-
ant. The key innovation of our framework is that we allow Ai,t to depend on local
productivity shocks and the endogenous and dynamic firm composition.

Definition 2. The endogenous location-level labor productivity is:

Ai,t ≡

 ∑
n∈Mi,t

ϕi,t(n)σ−1

 1
σ−1

(22)

Notice that definition 2 is isomorphic to a framework in which a location-specific vari-
ety is produced using intermediate inputs from local firms and aggregated according
to (2). Combining this definition with the firm’s production function, the productivity
of a location can be rewritten as:

Ai,t = zi,n ·

 ∑
n∈Mi,t

si(n)σ−1

 1
σ−1

(23)

22



Equation (23) shows that the labor productivity of a location depends on the exoge-
nous productivity shifter zi,t, the endogenous number of firms Mi,t, and importantly,
the endogenous idiosyncratic productivity distribution {si(n)}n∈Mi,t

. The distribution
of si(n) is determined by the incumbent and potential entrant problems described
above and evolves according to the following process:

{si(n)}n∈Mi,t
= {si(n)}In∈Mi,t−1

∪ {si(n)}En∈Mi,t
(24)

Intuitively, the current set of producing firms is the union of the sets of surviving firms
from the previous period and the potential entrants that decided to start production
in t.

Proposition 2. Output at the location level, given by Yi,t = Ai,tLi,t, can be decomposed as:

log(Yi,t) = log(zi,t)︸ ︷︷ ︸
Technology shock

+ log(s̃i,t)︸ ︷︷ ︸
Firm selection

+

(
1

σ − 1

)
log(Mi,t)︸ ︷︷ ︸

Varieties

+ log(Li,t)︸ ︷︷ ︸
Total labor

(25)

Where s̃i,t ≡
[

1
Mi,t

∑
n∈Mi,t

si(n)σ−1
] 1
σ−1

is the generalized mean idiosyncratic productivity of
location i. All terms in the decomposition are positively valued.

Proof. Combine (2), (11), (15) and (16).

Equation (25) shows that a location will produce more composite output per worker if
it faces favorable exogenous technology shocks; if firm selection improves; or if many
firms agglomerate in the location.

5.5 Equilibrium

Timing. Figure 5 illustrates the timing of our model. At the beginning of period t, all
agents observe the realization of local amenities, productivity shocks, trade costs, and
total population. As the composition of firms in period t was decided in t − 1, local
labor productivities, Ai,t, are immediately determined. Then, households determine
labor supply by deciding where to live, taking prices and wages as given.

Simultaneously, firms decide their labor demand and production levels, taking mar-
ket access and wages as given. Finally, profits are realized and redistributed to house-
holds. Before the end of the period, incumbent firms decide whether they will con-
tinue or exit, and potential entrants decide whether to enter or not. Once these deci-
sions are made, the number and composition of active firms in t+ 1 are determined.

Similar to Caliendo et al. (2019), we establish a distinction between a temporary and
a sequential competitive equilibrium. The temporary equilibrium is the solution to the
multi-location internal trade model. The sequential equilibrium is characterized by the
migration decisions of households and the entry and exit decisions of firms.

Definition 3. Given L̄t, ui,t, zi,t, τi,j,t, a temporary equilibrium are quantities Li,t, yi,j,t and
prices , wi,t, pi,t(n), Pi,t such that:

1. Households maximize utility given by (4)
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Figure 5: Timing of the model

t t+ 1
(a) Nature

ui,t, zi,t
τi,j,t, L̄t

I draw fi(n)
PE draw ei(n), si(n)PE

ui,t+1, zi,t+1

τi,j,t+1, L̄t+1

t t+ 1
(b) Firms and households

Firms
demand li,t(n)

produce yi,j,t(n)
profits πi,t(n)

I stay/exit

PE enter/not

HH move to i
consume cj,i,t(n)

t t+ 1
(c) Spatial general equilibrium

Mi,t

Ai,t
Li,t, wi,t, Pi,t

MStay
i,t

MEntry
i,t+1

Mi,t+1

Ai,t+1

Notes: I=incumbents. PE=potential entrants. HH=households

2. Firms maximize profits given by (13)

3. Wages wi,t clear local labor markets ∀i ∈ J :

Li,t =
∑
n∈Mi,t

li,t(n)

4. Prices pi,j,t(n) clear good markets ∀n ∈Mi,t and ∀i, j ∈ J :

ci,j,t(n) = yi,j,t(n)

wi,tLi,t =
∑
j∈J

∑
n∈Mj

pi,j,t(n)yi,j,t(n)

Definition 4. Given L̄t, ui,t, zi,t, τi,j,t and fi,t(n), ei,t(n), a sequential equilibrium are quan-
tities Li,t, Mi,t such that:

1. Migration decisions solve (10) and utility is equalized across locations Ui,t = Ut ∀i ∈ J ,
moreover: ∑

i∈J

∑
j∈J

(Li,t − Lj,t−1) = L̄t − L̄t−1

2. Entry and exit decisions solve (19) and (21) and:

Mi,t = MS
i,t +ME

i,t−1∀i ∈ J
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Where MS
i,t denotes the mass of surviving firms from t− 1 to t.

Proposition 3. The static equilibrium exists, and it is unique; therefore, the sequence of tempo-
rary equilibria exists, and is unique. Moreover, for arbitrary constants Ut and φt, the following
system of equations determines the static spatial equilibrium.

Li,tw
σ
i,t = σ̃U1−σ

t

∑
j∈J

τ 1−σ
i,j Aσ−1

i,t uσ−1
j,t Lj,tw

σ
j,t (26)

w1−σ
i,t = σ̃U1−σ

t

∑
j∈J

τ 1−σ
i,j Aσ−1

j,t u
σ−1
i,t w1−σ

j,t (27)

Li,tw
σ
i,tA

1−σ
i,t = φtw

1−σ
i,t u1−σ

i,t = mai,t (28)

Proof. From market clearing, the indirect utility function, and the price index, we ob-
tain (26). From the price index and the indirect utility function we get (27). From
theorems 1 and 2 in Allen and Arkolakis (2014) we know that, given L̄t, ui,t, Ai,t, τi,j,t,
the sequence of static equilibrium exists, it is unique, and it satisfies 28.

Proposition 4. There is a unique allocation of workers across firms within location given by:

li,t(n)

Li,t
=

(
si(n)

s̄i,t

)σ−1

(29)

Where s̄i,t ≡
(∑

n∈Mi,t
si,t(n)σ−1

) 1
σ−1

.

Proof. Combine equations (16) and (28).

According to (29), there is a convex relationship between a firm’s relative productivity
and its relative size. If firms with relatively high levels of productivity enter location i
such that firm n is 1% relatively less productive, it will lose (σ− 1)% of its share in the
local labor force.

6 Calibration

In this section, we take our model to the Mexican data by using a combination of
parameterization, model inversion, and internal calibration. Then, we conduct two
validation exercises to test the model’s predictive performance.

6.1 Parameterization

Time period and locations. In our model, each period spans five years, aligning with
the frequency of our five census waves: 1998, 2003, 2008, 2013, and 2018. We set the
5-year discount rate to β = 0.82, consistent with an annual discount rate of 0.96. We
restrict the number of locations to J = 2, 463. The rest have been excluded because
they do not consistently appear in all census waves, or they have fewer than 10 firms,
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which addresses confidentiality concerns. Our 2,463 locations encompass 93% of all
firms in 1998 and 85% in 2018.

Elasticity of substitution. We set σ = 9 for all periods, following Eaton and Kortum
(2002) and Allen and Arkolakis (2014). This choice allows us to ensure comparability
of our results with standard internal trade models.19 This value is higher than what is
often found in the literature (e.g Hsieh and Klenow (2009)). Lower values of σ would
imply lower substitutability across goods and therefore larger gains from the reduction
in trade costs.

Trade costs. We estimate trade costs τi,j,t for all census waves in two-steps. First,
we compute the minimum travel time between any two locations, Ti,j,t, by using the
Dijkstra algorithm (Dijkstra, 1959). This algorithm discretizes the space in cells charac-
terized by the speed of their highways. If a cell is not intersected by any highway, we
assume a transit speed of 5 km/h. If it is crossed by one or more highways, the transit
speed is determined by the one with the highest maximum speed, which ranges from
50 km/h to 120 km/h. We set the speed in cells forming urban agglomerations to be
30 km/h.

Once we have the minimum travel times for all pairs i, j and for all t, we compute the
trade costs as in Hanson (2005) and Pérez and Sandoval (2017) assuming the following
parametric form:

τi,j =

{
eλ0+λ1Ti,j if i 6= j

1 if i = j
(30)

Where λ0 represents the fixed cost of the goods leaving the location of origin, and λ1

denotes the additional cost incurred for each additional hour of transportation time.
We parameterize this function following Pérez and Sandoval (2017). They estimate
λ0 = 0.0557 and λ1 = 0.0024 for Mexico using price data for avocados, which are
a good primarily produced in a single location and sold at prices that increase with
travel time. Their estimates imply that when goods leave the location of origin, prices
increase immediately by 5.57% and then increase by 5.76% for every 24 hours in transit.

Figure 6 panel (a) shows the distribution of travel time hours for all pairs of origins and
destinations in the data. In 1998, the median origin-destination travel time was 13.4
hours. This decreased to 11.6 hours in 2018. Panel (b) shows how the overall reduction
in travel times affected the implied trade costs. The median origin destination pair
(i, j) saw a reduction of 0.26% in trade costs.

6.2 Labor and wage paths

Labor and wages. We assume that the observed geographical distributions of wages
wi,t and labor Li,t across locations are equilibrium outcomes of the model. We measure
the local labor distribution {Li,t}i∈J as the number of workers reported in the census.

The distribution of local wages {wi,t}i∈J , is obtained by residualizing wages in two
steps. First, we compute local average wages w̄i,t as total wage bill over the num-

19In Gaubert (2018) this is calibrated to match the average revenue-to-cost margin in each sector.
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Figure 6: Travel times and reduction in trade costs, 1998-2018

(a) Hours origin-destination (b) Trade costs reduction, 1998-2018

Notes: Figures show all origin-destination i, j combinations (3, 2342).

ber of workers. And second, we regress it on local observable characteristics that are
not accounted for by our model and use the estimated residuals as local wages. The
regression model is:

w̄i,t = β0 + β1% educi,t + β2% manufi,t + β3K/Li,t + β4% infi,t + εi,t (31)

Where i denotes the location and t the census year. The regression accounts for hetero-
geneity in education, industrial composition, capital intensity, and informality. Figure
18 in Appendix C shows the correlation between residualized wages and local popu-
lation. Wages in large locations are higher even after controlling by observable char-
acteristics. This is in line with a story in which locations with highly productive firms
increase both local labor productivity and wages, and thus attract more workers.

6.3 Model inversion

Local amenities and productivity. We invert the model to retrieve the distribution of
local amenities ui,t and local labor productivity Ai,t. For a given geography of trade
costs, differences in amenities are identified from differences in population in locations
with similar wages. On the other hand, differences in labor productivity are identified
from differences in labor income in locations with similar amenities. Formally, (32)
and (33) retrieve amenities and productivities from an observed distribution of trade
costs, local labor, and wages.20

u1−σ
i,t =

σ̃U1−σ
t

φt

∑
j∈J

τ 1−σ
i,j,t w

σ−1
i,t wσj,tLj,tu

σ−1
j,t ∀i ∈ J (32)

Ai,t =

[
1

φt
Li,tw

2σ−1
i,t uσ−1

i,t

] 1
σ−1

∀i ∈ J (33)

20Endogenous constants Ut and φt are not identified in levels. We normalize them to one at baseline.
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To determine φt we use the equilibrium in the labor market L̄t =
∑

i∈J Li,t:

φt = L̄t

(∑
i∈J

w1−2σ
i,t u1−σ

i,t Aσ−1
i,t

)−1

(34)

Figure 7 illustrates the correlation between amenities, labor productivity, population,
and wages. Two contrasting cases, Tijuana and Merida, highlight how these variables
interact. Tijuana is a dangerous city located in the northern Mexican desert, while
Merida, situated near the Caribbean Sea, is renowned for its safety. Tijuana has lim-
ited local amenities in comparison to Merida; nonetheless, Tijuana has higher popu-
lation and wage levels than Merida. This is explained by Tijuana’s higher local labor
productivity, which is driven by its highly productive firms in the export-oriented
manufacturing sector.

Figure 7: Amenities, productivity, and equilibrium outcomes, 2018

(a) Productivity and employment (b) Productivity and wages

(c) Amenities and employment (d) Amenities and wages

Notes: Marker size denotes the number of firms in the location.
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6.4 Internal calibration

Once we have fully characterized the path of aggregate location-level equilibrium out-
comes, we exploit the microdata to determine the primitives that govern firm dynam-
ics in the model. These are the path of location-level productivity shocks, the initial
distribution of idiosyncratic productivities, the entry- and exit-cost distributions, and
the path of potential entrants.

Location-specific productivity shock. From (23) and defining

s̄i,t ≡

 ∑
n∈Mi,t

si(n)σ−1

 1
σ−1

, (35)

we solve for the location-specific productivity shock as follows:

zi,t =
Ai,t
s̄i,t

(36)

Computation of zi,t requires first Ai,t which comes from model inversion described
above; and second, the distribution of firm-level idiosyncratic productivity, which is
a sequential equilibrium outcome. This distribution {si,t(n)}n∈Mi,t

∀i ∈ J depends
on the initial distribution of idiosyncratic productivities and the entry and exit costs’
stochastic distributions.

Initial idiosyncratic productivity distribution. To identify the initial distribution of
si,t(n) we assume that the economy reached the steady state in 1998 starting from an
arbitrary point in the past. Then, we exploit the result that in equilibrium:

li,t(n)

Li,t
=

(
si,t(n)

s̄i,t

)σ−1

(37)

Thus, the observed distribution of firm-level labor demand is fully informative about
the initial idiosyncratic productivity distribution. More precisely, if l̃i,t(n) =

(
1

σ−1

)
[log(li,t(n))−

log(Li,t)] follows an arbitrary distributionF (µl̃, σl̃), then, si,t(n) followsF (µl̃+log(s̄i,t), σl̃).
From firm-level data we compute µl̃, σl̃, and then we solve the fixed-point problem un-
til s̄i,t is consistent with the equilibrium condition.21

Potential entrants’ productivity distribution. The distribution of idiosyncratic pro-
ductivities is governed by F (µs, σs). Assuming that we know F (µf , σf ) and F (µe, σe),
we estimate the parameters µs, σs by solving the following problem:22

{µ̂s, σ̂s} = arg min
µs,σs

∑
i∈J

∑
n∈Mi

·
[
log(li(n)data)− log(li(n)model)

]2 (38)

Here, li(n) is the number of workers in a firm in the data, and li(n)model is the labor
demand in the model according to Equation 16. Intuitively, conditional on a set of

21In the quantitative section we assume F (.) is log normal and that µl̃, σl̃ are location specific.
22We need to add more details on the definition and existence of a steady state.
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values for the entry and exit costs, the optimal estimators of µs, σs are the ones that
minimize the square percentage deviations in labor demands observed in the data
and the ones implied in the model.

Exit costs. We estimate the exit-cost parameters as follows: first, recall that a firm at
the end of period t stays in the market for period t + 1 if the expected continuation
value in t + 1 minus a cost shock observed at the end of t is higher than the outside
option, which we normalize to zero. Denote the continuation value as:

xi,t(n) = βEΩ [Vi,t+1(n)|Ωt] (39)

Suppose that the cost shock, denoted as fi,t(n), comes from a Gumbel probability dis-
tribution G(.). The survival probability of a firm is then:

λ(xi,t(n)) = P[xi,t(n) > fi,t(n)] = G(xi,t(n)) (40)

Denoting the location parameter µf and the spread parameter σf , we obtain:

λ(xi,t(n)) = e−e
−
(
xi,t(n)−µf

σf

)
(41)

To compute xi,t(n) we assume that firms form myopic expectations denoted as Ẽ about
the future-state space Ωt+1. This implies that ẼΩ [Vi,t+1(n)|Ωt] = Vi,t(n). Then, the
survival probability is the solution to the non-linear system given by equations 17 and
41, which gives:

λ(wi,tli,t(n)) =
1

β
−

1
σ−1

wi,tli,t(n)

µs − σslog[−log[λ(wi,tli,t(n))]]
(42)

Equation 42 shows that there is a non-linear mapping between the firm-level equi-
librium wage bill wi,tli,t(n) and the survival probability λ(wi,tli,t(n)). We leverage this
relationship to retrieve the cost-shock-distribution parameters µf , σf by solving for the
parameters of the cost-shock distribution that will solve the minimization problem:

{µ̂f , σ̂f} = arg min
µf ,σf

∑
i∈J

∑
n∈Mi

·
[
λ(wi,tli,t(n))data − λ(wi,tli,t(n))model

]2 (43)

Problem (43) requires that the full mapping between wage bill and exit rates are de-
fined in the data. Since the data are granular, we approximate this relationship by
grouping all wage-bill values in percentiles and then computing the associated exit
rate. Finally, we approximate this relationship with a polynomial fit, using this con-
tinuous approximation as the values targeted by the minimization problem.

Figure 8 shows the polynomial fit ant the survival rates in the data. Notice that sur-
vival rates are concave for the low and middle sections of the wage-bill distribution
and convex for the high end. This implies that when very large firms shrink, their
survival rates decrease faster than when small firms in terms of wage bill do.

Potential entrants and entry costs. At every period we observe in the data the produc-
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Figure 8: Wage bill (wl) and survival rate λ in the data

Notes: Each dot is a percentile p in the wage-bill distribution. The polynomial fit of degree d estimated
with the ordinary- least-squares (OLS) model: log

(
λp,t

1−λp,t

)
=
∑
d γdlog(wLp,t)

d + γt + εp,t.
For d = 3, γ1 = 3.206, γ2 = −0.512, γ3 = 0.028.

tivity distribution of entrants and their number. However, since by definition we do
not observe the potential entrants, there are infinitely many combinations of potential
entrant distributions and entry costs that rationalize the observed entrants in the data.

To address this problem we assume first that entry costs ei(n) are drawn from the same
distribution as exit costs fi(n). Then, for a given productivity distribution of potential
entrants, we back up the mass of potential entrants {MPE

i,t }i∈J by solving their entry
problem until the implied number of entrants {ME

i,t}i∈J plus the survivors {MS
i,t}i∈J is

equal to the number of firms observed in the next period {Mi,t+1}i∈J .

Finally, to recover the parameters governing the productivity distribution of potential
entrants we assume that they follow a process F (µE, σE). Then we solve their entry
problem, combine these entrants with the survivors, and verify if this productivity
distribution is consistent with the one observed in the next period. We iterate on µE, σE
until we reach convergence.

6.5 Model validation

Local productivity. Local labor productivityAi,t is identified without production data.
As a validation exercise, we show that its correlation with its data counterpart, based
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on firm-level output data, is strong. We do this by computing Âi,t as in (22), with
ϕ̂i,t(n) estimated as value added per worker.

Figure 19 in the appendix shows that, for all years, the R2 of regressing model-implied
and empirical local labor productivity is close to 0.8. This suggests that the model-
implied local labor productivity captures most of the variation in the data. The re-
maining 0.2 of the variation comes from mechanisms absent in out model, such as
industrial heterogeneity or spatial frictions in human capital mobility.

Natural experiment replication. We further validate the model by replicating the nat-
ural experiment from Section 4 inside the model and showing that it provides similar
point estimates. We do this by creating a counterfactual scenario in which we effec-
tively shut down all new highways, eliminating all plans that were constructed from
2013 to 2018. We then compare outcomes from the data and from this counterfactual
exercise for both treated and untreated groups.23

Table 6 column (3) shows that the empirical point estimate is 1.6% in a 90% confidence
interval of [0.1%, 3.1%]. Figure 9 panel (a) shows that the associated effect in the model
is 2.8%, which falls within the confidence interval. We interpret this as reasonable
evidence that the model is capable of capturing the observed behavior in the data.

Furthermore, we use the model to argue that the “no anticipation of the treatment" as-
sumption in the empirical exercise implies an underestimation of our estimates. To
address this issue, we allow firms in 2013 to expect that all announced construction
plans will be built and to make their surviving decisions accordingly. We then com-
pare treated and untreated groups in 2018. Panel (b) reveals that if we allow firms to
react to the announcement, the net effect is 0.4 percentage points smaller, which is still
within the confidence interval but closer to the empirical estimate. This result suggests
that our empirical estimates are likely to be a lower bound of the true effect.

7 Quantitative results

7.1 Contribution of highways to welfare and growth

Between 1998 and 2018, the network of paved roads and highways in Mexico ex-
panded from approximately 100,000 kilometers to nearly 200,000 kilometers. In this
section, we show that this expansion produced modest welfare and income gains but
high reallocation of economic activity across locations. We then show that firm dy-
namics were a key driver of both the aggregate and distributional effects. To analyze
these dynamics we construct a counterfactual scenario in which the trade geography
remains at 1998 levels, and we then recalculate the growth trajectory using our model.
We interpret the difference between this counterfactual scenario and the path in the
data as the contribution of highways that were constructed between 1998 and 2018.

Welfare and aggregate effects. New highways built from 1998 to 2018 increased wel-
fare, real income, and productivity. Table 7 shows the comparisons of results from the
counterfactual scenario in which the highway network remained as it was in 1998 and

23We do not limit the exercise to eliminating only highways from the construction plans; this is
because our empirical estimates may also capture effects from secondary roads or other highways that
influence both the treatment and control groups.
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Figure 9: Effects of new highways 2013-2018 model vs natural experiment

(a) Firms do not expect plans to be executed (b) Firms expect plans to be fullyl executed

Notes: The figure shows the replication of natural experiment for 2013-2018 construction plans. In
panel (a) incumbent firms do not expect plans to be executed. In panel (b) incumbent firms expect all

plans to be executed. Vertical dashed lines denote the corresponding average effect.

those outcomes as shown in our data that actually occurred in 2018. Welfare is 0.44%
higher. Real income is 0.64% higher. And aggregate productivity is 0.13% higher. The
number of firms, however, is 0.10% lower.

Welfare gains are entirely explained by the increase in real income as amenities are
exogenous. The findings of Allen and Arkolakis (2014) serve as a reference for the
extent of welfare gains; they document that the entire interstate highways network in
the US increased welfare by 1.3%. As our model reveals, real income rises for two
reasons. First, labor productivity improves, leading to higher nominal wages. Second,
reductions in trade costs drive down prices of goods, as indicated by reductions in
local price indices. The increase in productivity is explained by positive firm selection,
driven by higher survival and entry rates of productive firms. Then, too, a more effi-
cient transportation system requires fewer firms in the aggregate, as lower trade costs
allow fewer firms to serve more markets.

Table 7: Gains from highways
(1) (2) (3) (4)

Year Welfare Real income Productivity Firms
1998 0.00% 0.00% 0.00% 0.00%
2003 0.13% 0.09% 0.04% -0.04%
2008 0.24% 0.36% 0.25% -0.02%
2013 0.40% 0.40% 0.22% -0.07%
2018 0.44% 0.64% 0.13% -0.10%

Notes: Gains measure how much higher outcomes are with respect to a counterfactual in which none
of the new highways after 1998 were built. L denotes total labor productivity as in (22). wL/P is total

real remunerations. M is the total number of firms.

Distributional effects. Aggregate results hide important distributional effects across
space. To illustrate this point, Table 8 shows gains at the 25th, 50th and 75th percentile
levels in labor, real income, labor productivity, and number of firms that result from
new infrastructure across all locations from 1998 to 2018.
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People migrate until utility is equalized; thus, there is no dispersion in welfare gains.
This leads to net migration-implied population gains of at least 5% above the 75th per-
centile and similar levels of losses below the 25th percentile. Due to these population
losses, as shown by Column (2), real income fell in more than half of the locations,
while, at the same time, real income for those whose earnings were in the top 75th
percentile rose by at least 5%.

Firms react differently across space to new transport infrastructure. As shown in Col-
umn (3), labor productivity decreased in half of the locations due to exit of productive
firms. Even though, in the aggregate, better transport infrastructure implies that fewer
firms are needed, this is mostly driven by net exits of firms in locations locations that
are farther away from the highway network. As Column (4) shows, there was a net
decrease in the number of firms in more than half of locations, but a net increase of at
least 2.34% in a quarter of locations.

Table 8: Distribution of impacts from new highways
(1) (2) (3) (4)

Percentile Labor Real income Productivity Firms
25th -5.76% -5.32% -0.60% -2.65%
50th -0.94% -0.50% 0.01% -0.12%
75th 5.17% 5.60% 0.58% 2.34%

Notes: The table shows the impacts on labor, real income, productivity and the number of firms from
the new highway network by comparing outcomes with those that would have emerged in a

counterfactual scenario in which the highway network had remained unchnaged since 1998. L denotes
total labor productivity as in (22). wL/P is total real income. M is the total number of firms.

To understand the geographical concentration of these heterogeneous gains, we show
in Figure 10 the state-average impacts on key economic outcomes.24 In general, the
states that experienced the largest gains are those situated near to the main port of
entry to California (Tijuana) or to the Caribbean Sea, the largest tourist hub (Cancun).
The states that saw moderate gains are those located near the port of entry to New
Mexico and Texas (Juarez and Nuevo Laredo) or to the main sea ports connecting
Mexico to Asia (Manzanillo) and Europe (Veracruz). The remaining states mostly in-
curred losses, indicating that more economic activity would have been concentrated
there in the absence of the new transport infrastructure.

Panel (a) in Figure 10 shows that consumers in better connected areas can purchase
goods at prices that are as much as 3% lower. According to panel (b), demand for
goods produced also increases by up to 5% these locations. Panels (c) and (d) further
reveal that these effects result in positive net population growth ranging from 10% to
40%, along with similar real revenue gains. In panel (e), it is shown that in these loca-
tions, the introduction of new highways increases the number of firms by 1% to 5%.
While these firms may vary in productivity levels, the addition of the new highways
is predominantly productivity enhancing (see panel (f)). The opposite holds true for
areas with limited exposure to new transport infrastructure; these firms largely expe-
rience .

24We calculate these averages weighted by population. State-level averages are used for clarity in
presentation. Figure 20 in the Appendix shows maps with impacts at the location level.
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Figure 10: Average impacts from the highway network expansion (1998-2018)

(a) Impacts on the price index (%) (b) Impacts on market access (%)

(c) Impacts on employment (%) (d) Impacts on real revenue (%)

(e) Impacts on the number of firms (%) (f) Impacts on productivity (%)

Notes: The maps show the impacts that stem from expanding the highways network over the period
from 1998 to 2018. Changes are shown at the state level and are calculated by averaging locations
weighted by population. Impacts at the municipal level are shown in Figure 20 in Appendix C.
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Contribution of firm dynamics. We quantify the role played by firm dynamics in the
aggregate and distributional effects of new transport infrastructure in two ways. First,
we compare the effects of highways on economic outcomes in our model to the effects
predicted by standard trade models, which assume a static economy and exogenous
local productivity. Notice that our model collapses to this framework by assuming an
infinitely lived, single representative firm by location (Allen and Arkolakis, 2014).

Table 9 shows welfare and income gains when we abstract from firm dynamics. We
omit gains in productivity and the number of firms because they are zero by definition
in the absence of dynamic firm behavior. Column (1) shows that welfare gains in the
absence of firm dynamics are slightly smaller. In terms of the impacts on welfare, this
result suggests that the reduction in trade costs, not local productivity, matters the
most for individuals. A key driver of this result is the assumption of free mobility.
In terms of real income, firm dynamics play a bigger role. When we allow for firm
dynamics, income gains in 2003 are 0.09%, while a standard model would imply gains
of 0.05%. This means that 55% of the real revenue gains come from the reduction in
trade costs induced by better highways, and that the remaining 45% of real income
gains come from local productivity gains driven by firm dynamics. The contribution
of firm dynamics is 11% for 2008, 16% for 2013 and 7.6% for 2018.

Table 9: Gains from highways, without including firm dynamics
(1) (2)

Year Welfare Real income
1998 0.00% 0.00%
2003 0.11% 0.05%
2008 0.24% 0.32%
2013 0.39% 0.34%
2018 0.44% 0.59%

Notes: The table shows how much welfare and real income increased following the building of
highways over the 1998-2018 period with respect to a counterfactual scenario that would have

emerged had no new highways been built. The productivity and number of firms in a given location
are kept fixed.

A model overlooking firm dynamics not only underestimates gains from the construc-
tion of new highways but also their dispersion. Table 10 shows that the interquartile
range of labor gains is 9.98%, compared to 10.93% in our baseline model. Similarly,
for real income gains. This result suggests that firm dynamics are a force for spatial
divergence when new transport infrastructure is unequally targeted across space.

Table 10: Distribution of gains from highways, without including firm dynamics
(1) (2)

Percentile Labor Real income
25th -5.32% -4.87%
50th -0.72% -0.27%
75th 4.67% 5.12%

Notes: The table shows how much welfare and real income increased following the building of
highways over the 1998-2018 period with respect to a counterfactual scenario that would have

emerged had no new highways been built. The productivity and number of firms in a given location
are kept fixed.
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Second, we compute the extent to which the increase in local labor productivity in-
duced by transport infrastructure can be attributed to firm selection or net firm entry.
Notice that in a model without firm dynamics both are zero. Equation (25) implies
that:

∆log(Ai,t)
baseline −∆log(Ai,t)

no new highways = ∆log(s̃i,t)
baseline −∆log(s̃i,t)

no new highways

+ ∆log(Mi,t)
baseline −∆log(Mi,t)

no new highways

(44)

Equation (44) captures the fact that some firm selection and net firm entry would have
taken place in a counterfactual with no new highways over the period from 1998 to
2018. The difference between this counterfactual and what we observe in the data
captures the responses of firms to new infrastructure.

Figure 11: Decomposition of local productivity growth induced by new highways
(1998-2018

(a) Decomposition of productivity growth (b) Correlation between location productivity and
firm selection

Notes: Productivity is measured by Ai,t. Selection is measured by average idiosyncratic productivity
s̃i,t. Firms are measured by Mi,t. Dots show the J locations, and lines show a polynomial fit of degree

3.

Figure 11 shows the decomposition in (44) for all locations. Panel (a) shows that, in half
the locations, new transportation infrastructure decreased labor productivity. More-
over, for most of the locations a larger portion of the total change is explained by
firm selection rather that by net firm entry. In panel (b), we regress labor productiv-
ity growth on firm-selection growth induced by new highways over the period from
1998 to 2018. According to the R2, 64% of the variation in labor productivity growth is
explained by variation in firm selection.

7.2 A more ambitious infrastructure policy

Between 1998 and 2018 the paved roads network in Mexico doubled. The median
origin-to-destination travel time (to drive from municipalities in Mexico to Mexico
City) fell by 13% in 20 years, from 13.4 to 11.6 hours. Mexico has 1.4 meters of paved
roads per capita. This is one-tenth of the equivalent figure for the US, Mexico’s neigh-
bor and largest trading partner. The disparity raises the question: What would have
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happened if infrastructure investments had been more ambitious over the period we
study?

We use our calibrated model to answer this question by focusing on an alternative in-
frastructure policy in which the percentage reduction in travel times is twice as great as
the levels calculated by using the 1998-2018 data; we then compare the likely outcomes
from the two counterfactual scenarios: 1) the scenario in which the speed made pos-
sible from the highway network is twice that of the speed possible from the network
that was constructed by 2018, and 2) the scenario that would have likely occurred in
2018 had no new highways been built after 1998.

Table 11: Likely impacts of a highway network twice as fast as the 2018 network
(1) (2) (3) (4)

Year Welfare Total wL/P Total A Total M
1998 0.00% 0.00% 0.00% 0.00%
2003 0.21% 0.10% 0.01% -0.08%
2008 0.45% 0.49% 0.28% -0.05%
2013 0.59% 0.56% 0.24% -0.12%
2018 0.84% 1.10% 0.14% -0.12%

Notes: The table compares the impacts from two counterfactual scenarios, one in which journeys are
twice as fast as those made possible by the network that existed in 2018, and one in which the highway

network in 2018 remained the same as it had been in 1998.

Table 11 shows the results of this experiment. Column (1) shows that welfare and
real revenue gains in 2018 would have been nearly double the level of gains from the
actually built highways. Although labor productivity would be higher with a speedier
highway network than the one that was constructed, the difference is small.

Table 12: Distribution of impacts if the highways were twice as fast as the 2018 network
(1) (2) (3) (4)

Percentile Labor Real income Productivity Firms
25th -5.14% -5.55% -0.62% -2.64%
50th 0.60% 0.19% -0.02% 0.00%
75th 5.62% 5.21% 0.59% 2.47%

Notes: The table compares impacts from two counterfactual scenarios: one in which the highway
network is twice as fast as the 2018 network that was constructed, and one in which no new highways
were built after 1998. L denotes total labor productivity as in (22). wL/P denotes total real income. M

denotes the total number of firms.

Finally, Table 12 shows that, although the welfare and real income gains are larger,
the unequal distribution of these benefits is preserved. This exercise highlights that
proportionally improving the highways network has aggregate benefits but no effects
on regional convergence.

8 Conclusion

This paper reveals that firm dynamics are a key determinant of the aggregate and
distributional effects of new transportation infrastructure. We empirically document
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that new transportation infrastructure increases labor productivity, firms’ total factor
productivity, and entry and exit rates of firms.

We introduce a novel, spatial general-equilibrium model with heterogeneous firm dy-
namics to show that infrastructure policies affect aggregate income an welfare in two
ways. The first is a direct effect: better transportation infrastructure reduces trade
costs for goods, which is transmitted to consumers in the form of lower prices, and to
firms as higher demand. This second is an indirect effect: new transport infrastructure
increases entry and survival of productive firms in locations that are better integrated
into the transportation network; this translates into higher labor productivity, income,
and welfare.

These effects, however, are unequally distributed across space and among income lev-
els. Regions close to the US border, to sea ports, and to tourist hubs are better ex-
posed to new transportation infrastructure so they disproportionally benefit the most.
Besides having greater market access, these regions also attract and keep productive
firms. The opposite is true for less expose locations, mostly concentrated in the center
of the country.

All in all, transport infrastructure is likely to have stronger distributional than aggre-
gate effects, especially in situations in which the highways network is underdevel-
oped, as is the case in Mexico. An interesting avenue for future research could exam-
ine whether a place-based system of taxes and transfers can help mitigate the negative
effects of low infrastructure investments in remote locations.
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A Appendix: Data

Constant geography

Geographical units covered by the Economic Census of Mexico are States, Munici-
palities, Localities, and AGEBs, in descending order. To capture the change of eco-
nomic activities within a single region over time, we needed to generate an identifier
to overcome the issue of localities growing in size and splitting into multiple locali-
ties.25 Therefore we developed a balanced panel of agglomerations, which we gen-
erate by combining neighboring localities that share borders. First, we take the 2019
Economic Census as a baseline considering that it will have the most extensive cov-
erage of localities. The geographical coverage of the Economic Census is based on
economic activity, hence a combination of both urban and rural localities. The next
step was then to merge both the urban and rural localities that appeared in the Census
into the shapefiles published by the INEGI. However, in cases where we were not able
to find a shapefile for a locality in the Census, we found an alternative source of the
Catalog, also published by INEGI which is a list of localities and their coordinates. We
transformed the list of coordinates into points on the map and created a 1km buffer
around those points in order to factor them in as polygons. With the selected set of
localities’ polygons, we create a buffer of 1km to identify clusters of localities. If the
buffered localities share borders, we define it as an "Agglomeration". This process
yielded a total of 3,248 unique agglomeration IDs.

Figure 12: Constructing agglomerations

(a) 1km Buffer around localities (b) Grouped neighboring localities

Notes: Figure shows an arbitrary area.

Once we had the polygon shapefile of agglomeration IDs, we assigned each year of lo-
calities in the respective Economic Census to a respective agglomeration id. This pro-
cess is conducted in three steps. First, we repeat the process of selecting from the map
which localities are covered by the Census. We then overlap the localities shapefile
with the agglomeration shapefile to assign the ID of its overlapping agglomeration.
For the localities that were not matched to the Economic Census, the second source
was the Catalog, and for those that still did not find a correspondence, we assigned
the same agglomeration id as the largest locality in the given municipality.

25Localities are defined as 2,500 inhabitants.
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Roads

We use 2004, 2011, 2014, and 2019 highways (Red Nacional de Caminos) publicly avail-
able from INEGI. Among the different types of road constructions, we focus on inter-
city highways (Carreteras). Similar to agglomerations, we follow the assumption that
highways cannot disappear. Therefore, we fixed the set of highways from each year by
adding highways that existed in the previous year but were omitted. First, we created
a buffer of 500m around all the highway maps to accommodate inconsistent breaks
of highways. Next, we overlap the previous year’s map with the more recent map,
identifying which segments lie outside the buffer zones of the most recent map. This
will locate the highways that exist in the previous year but not on the most recent map.
Based on the assumption that highways do not disappear, we append these parts to
the recent map and create a "fixed" map of highways.

The information available for each highway are the ID number of the highway, route
number, speed, and the number of lanes.

Figure 13: Highways in 2018

(a) 1km Buffer around localities (b) Grouped neighboring localities

Notes: Figure shows an arbitrary area.

Table 13: National investment in highways (Million 2018 MXN)

2004-2014 2014-2018

Total investment 599650.42 221466.46
Yearly avg. 59965.04 55366.61

Investment numbers taken again from the annuals. We take half the
reported investment for end-of-period and start-of-period years.
Yearly values deflated with the inflation reported between July of
the base year and July of 2018. Inflation taken from INEGI’s in-
flation calculator available at https://www.inegi.org.mx/app/
indicesdeprecios/calculadorainflacion.aspx.

Minimum travel times

Similar to grid points, but in more accurate distance measurement, we use Uber’s
Hexagonal Hierarchical Spatial Index as our grid system, or in other words, cells.26

26https://www.uber.com/blog/h3/
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Based on the hexagonal system, we locate agglomerations and highway networks
to the overlapping hexagon and store the highway’s information in the respective
hexagons. For instance, information on the speed, number of lanes, and width of
the road will be stored in the neighboring hexagons, which allows us to develop an
algorithm to estimate travel times that follow the path of hexagons. In addition to the
highway information publicly available at INEGI, we consider the elevation of locali-
ties to reflect actual travel times.27

Our travel time analysis is conducted in four steps. First, we select the origin, desti-
nation, and highway network that will be used to travel from one location to another.
It can be traveling from one agglomeration to another, or it could also be from one
agglomeration to an airport, port, or even a specific city. For the origin and desti-
nation shapefiles, in case they are in polygons, we extract each polygon’s centroids
and consider them as a starting point and an ending point. Once we have chosen the
shapefiles, we use the aforementioned open-source hexagon system by Uber to locate
the shapefiles into respective hexagons. When storing information to the highways,
we assign a set of parameters to address the issue of missing information for some
years. We acknowledge that some highway shapefiles might not have all the infor-
mation on speed, lanes, and width; hence we include in the algorithm to take specific
values when there is a piece of missing information. Additionally, there will always
be hexabins where it is not close to a highway network. For these hexagons, we assign
a speed value of 5km/hour, meaning the only option will be to travel by walking. We
also assign the order of variables based on priorities among speed, lane, and width
for the code to first use when calculating the travel time. Then, we estimate the travel
time from one origin point to all other destinations using the properties. Finally, we
merge all the different origin points into a single matrix.

Construction plans

We focus on two government infrastructure projects under two administrations: Fe-
lipe Calderón(2006-2012) (see Figure 14) and Enrique Peña Nieto(2012-2018) (see Fig-
ure 15). Based on the official report National Infrastructure Program published by
the Department of Transportation (Sector Comunicaciones y Transportes(SCT)), we
focused on highway plans, which yielded 175 plans from the Calderón administra-
tion and 76 plans from the Peña Nieto administration. Both reports include details on
which State the highway is located in, and the type of improvement the plan aims to
achieve (construction or expansion).

27https://portal.opentopography.org/datasetMetadata?otCollectionID=OT.042013.4326.1
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Figure 14: Example of 2007-2012 Construction Plan

Figure 15: Example of 2013-2018 Construction Plan

Based on the construction plans, we develop a data set that contains information on
the respective state in which the plan takes place, the duration of the project, and
specific details of the construction.
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Figure 16: Using Google Earth Pro to digitize the construction plans

Once we had a dataset of the construction plans list, the next step was to digitize the
information in map format. Using Google Earth, we set the origin and destination of
the highway plan based on how the name is written (e.g., if the plan stated "Expansion
a 12 m Caborca-Sonoyta", meaning expand the lane to 12m in the highway connecting
Caborca and Sonoyta, we would set Caborca as the origin and Sonoyta as the destina-
tion). Each search was saved, merged, then exported into a shapefile. However, note
that the plans did not mention which specific part of the highway they will improve.
Thus we considered the entire highway as a part of the plan. Once we had a complete
shapefile of all the construction plans, we conducted a quality check for all the plans.
We would search the plan online and see if there are additional sources published by
each State government supplementing the details of the plan. In some cases, the State
government reported an image of the exact location of the plan.

We were able to classify the construction plans based on the type of road, the type of
improvement, and whether the targeted highways are located in/out of a city.

Type of highways listed in the construction plan:

• Inter-region (e.g., Chalco-Nepantla)

• Beltways (e.g., Libramiento)

• Connection to the border of each state (e.g., Límite de estados Pue/Ver)

• Junctions (e.g., entronque La Ventosa)

47



• Access to a specific location (e.g.,Acceso al Puerto Salina Cruz)

• Bridges (e.g., Puente)

Type of construction plans:

• Expand highways to 4/6/8 lanes (both direction)

• Construct 4 lanes (both directions)

• Expand or construct 2 lanes and 2 side roads

• Modernize and improve conditions

City classification:

• IN: If the construction plan is for a highway inside a city

• OUT: If the construction plan is for a highway connecting two regions outside a
city

• LIB: If the construction plan is for beltways specifically 28

Collecting information on whether the construction plan was executed.

Treatment variables

Variables For all the treatment variables, we generate three types of buffers around
each agglomerations in order to accommodate the noise of map accuracy. All variables
are constructed by agglomeration IDs.

Length of highways’ segments that overlap each agglomeration Area of buffered ag-
glomerations Density (length/area) of highways’ segments

With regard to the construction plan, we first construct a dummy variable indicat-
ing whether an agglomeration lies within any construction plan. We assess by 5,10,
and 15km buffers of each agglomeration. Next, we specify the construction plan by
those that were executed and those that were not. We generate a dummy variable
indicating whether an agglomeration lies within an executed construction plan and a
non-executed plan. Lastly, we develop a dummy variable indicating whether an ag-
glomeration is placed in a construction plan’s starting and end points. We identify the
starting and end point by the region’s first and last name mentioned in the plan.

We also construct treatment variables to measure market access. Using the population
census of 2019, we extract the population size by agglomerations. Next, we identify
the top 100 agglomerations with the largest population. Then we use the previously
generated minimum travel time values to generate a new variable, the distance from
each agglomeration to the nearest hub.

28We specify the beltways since beltways mostly have the purpose of reducing traffic within each
city.
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B Appendix: Empirics

Treatment and sample

Figure 17: Treated and untreated locations

Notes: Figure displays an arbitrary area of the country. Gray areas are locations (3,248 in total). Dashed
areas are buffers around construction plans. For a given year, green construction plans have been fully

executed and red not yet.

Table 14: Treated locations
(a) Locations by overlap with plans

2007-2012 2013-2018
Buffer size (km) 5 10 15 5 10 15

With plans 771 1,052 1,330 457 678 898
With out plans 2,475 2,194 1,916 2,789 2,568 2,348

Total 3,246 3,246 3,246 3,246 3,246 3,246

(b) Locations by execution of plans
2007-2012 2013-2018

Buffer size (km) 5 10 15 5 10 15
Executed 259 261 265 278 404 551

Not executed 512 791 1,065 179 274 347
Total 771 1,052 1,330 457 678 898
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Table 15: Firms in the sample and treated group
(a) Sample of firms
2007-2012 2013-2018

Buffer size (km) 5 10 15 5 10 15 Total
1998 2.09 2.16 2.26 1.65 1.69 1.73 2.78
2003 2.23 2.30 2.42 1.75 1.79 1.84 2.98
2008 2.72 2.81 2.96 2.14 2.20 2.27 3.67
2013 3.06 3.17 3.36 2.43 2.50 2.58 4.17
2018 3.43 3.56 3.78 2.73 2.81 2.92 4.74

(b) Treated firms
2007-2012 2013-2018

Buffer size (km) 5 10 15 5 10 15 Total
1998 1.43 1.50 1.52 0.73 0.76 0.80 2.78
2003 1.51 1.59 1.61 0.77 0.80 0.84 2.98
2008 1.82 1.92 1.95 0.97 1.01 1.07 3.67
2013 2.04 2.16 2.20 1.12 1.16 1.23 4.17
2018 2.26 2.40 2.45 1.26 1.31 1.40 4.74

Validity of empirical approach

Table 16: Predicting construction plans 2013-2018

(1) (2)
Plan Execution

log(population) 0.0483*** -0.0262
(0.00987) (0.0173)

log(value added/workers) 0.0563*** 0.0483
(0.0138) (0.0251)

∆ log(population) 0.384*** 0.144
(0.0566) (0.104)

∆ log(value added/workers) -0.0335* -0.0123
(0.0147) (0.0287)

log(votes for PRI) -0.0191* -0.0191
(0.00828) (0.0149)

Observations 2146 611
R-sq 0.255 0.379

Notes: Standard errors are in brackets. ∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1. Regressions at the municipality
level. Variables and growth rates are from Economic Census 2003 and 2008 and population Census

2000 and 2010.
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Table 17: Balance table
Variable Locat. Mean Mean Diff. s.e. p-value Stat.

untreated treated signif.

Share manuf. 400 0.169 0.151 -0.018 0.015 0.220
Share salaried 400 0.228 0.288 0.061 0.019 0.001 ***

log(K) 400 11.237 11.547 0.310 0.310 0.318
log(K/L) 400 4.305 4.527 0.223 0.109 0.041 **

∆ share manuf. 376 0.018 0.013 -0.006 0.007 0.407
∆ share salaried 376 -0.019 -0.025 -0.006 0.012 0.612

∆ K 376 0.441 0.445 0.004 0.074 0.957
∆ K/L 376 -0.001 0.072 0.073 0.067 0.275

log(L per estab.) 400 0.944 0.996 0.052 0.049 0.289
log(V.A./L) 400 4.665 4.859 0.194 0.138 0.161

log(TFP) (L-P) 400 4.028 4.258 0.229 0.128 0.073 *
∆ L per estab. 376 0.114 0.082 -0.032 0.027 0.229

∆ V.A./L 376 -0.202 -0.260 -0.058 0.065 0.373
∆ TFP 376 -0.177 -0.170 0.007 0.094 0.937

log(population) 397 10.949 10.964 0.015 0.174 0.931
∆ population 362 0.801 0.832 0.030 0.015 0.050 *

log(highways) 400 10.753 10.618 -0.136 0.093 0.147
∆ highways 400 0.271 0.236 -0.036 0.023 0.114

First stage regressions

Construction plans and market access. An implicit assumption of our identification
strategy is that the execution of construction plans affects firms by increasing their
market access as they can reach more distant markets or acquire intermediate inputs
at a lower cost. We test this assumption by estimating the following two-ways-fixed-
effects model:

log(MAj) = time+ treatmentj + δ · time · treatmentj + β · controlsj + εj (45)

We estimate Equation 45 separately for both sets of construction plans at the location
level. Here time denotes pre and post treatment periods and treatmentj whether the
location belongs to the treatment group or not. controlsj is a battery of locaiton level
controls at baseline.

MAi is a measure of market access. We follow Allen and Arkolakis (2014); Blankespoor
et al. (2017) to compute it according to:

log(MAi) =
∑
j

Populationj

τσ−1
i,j

(46)

To stay consistent with the literature, we assume σ = 9. MAi captures the market
access from location i, defined as the weighted sum of the population of all locations
in the country discounted by the one-to-one trade costs τij . For this exercise, we keep
the population fixed at 2003 levels. We compute two versions of this measure. MA1

that includes all locations; andMA2, that includes all but the location i itself. The trade
costs τij is determined as in Equation 30, explained in detail in the model section.
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Table 18: First stage regressions

Plans 2007-2012 Plans 2013-2018

(1) (2) (3) (4)
log(MA1) log(MA2) log(MA1) log(MA2)

time 0.00752*** 0.00812*** time 0.00130*** 0.00154***
(0.00180) (0.00163) (0.000188) (0.000125)

treated -0.00439* -0.00383 treated -0.000180 -0.000397
(0.00245) (0.00236) (0.000625) (0.000576)

time*treated 0.00798* 0.00757* time*treated 0.000756** 0.000560*
(0.00448) (0.00444) (0.000357) (0.000329)

Controls Yes Yes Controls Yes Yes
Obs. 1230 1230 Obs. 750 750
R-sq 0.99 0.99 R-sq 0.99 0.99

Notes: Standard errors are in brackets. ∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1.

Table 18 shows the results for both sets of construction plans, for two measures of
market access and controlling for baseline characteristics market access in 2004 and
state fixed effects. In summary, execution of construction plans has a positive effect on
market access in treated locations.

For the construction plans 2007-2012, their execution implied a 0.79% higher market
access for exposed locations. In this period, market access increased in average 0.75%
for all locations, meaning that the treatment implied an increase in market access twice
as large for treated locations. For the 2013-2018 plans, the increase was 0.07%. Since
in this period market access increased in average 0.13% for all locations, the treatment
implied a 53% larger market increase for treated locations.
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Robustness checks

Regressions by sector

Table 19: Regressions by sector, Construction plans 2007-2012

Manufacturing

(1) (2) (3) (4) (5) (6)
log(va/L) log(TFP )GNR log(L) log(w) Entry Exit

β−1 .0733* 0.01 0.0226 0.0062 0.0084 .0203*
s.e. [.0401] [.0148] [.022] [.0107] [.0117] [.0121]

β0 -.0463* 0.0091 -.0559*** -0.0056 0.008 -.0199***
s.e. [.0237] [.0066] [.0161] [.0064] [.0092] [.0059]

β1 .0648* 0.0129 -.0555* -0.0107 0.0099 -.0337***
s.e. [.0342] [.0144] [.0287] [.0073] [.0134] [.0082]

Controls No No No No No No
Obs. 733,654 733,654 733,654 733,654 733,654 733,654

Commerce

(1) (2) (3) (4) (5) (6)
log(va/L) log(TFP )GNR log(L) log(w) Entry Exit

β−1 -0.0372 -0.014 -0.0029 -0.0054 0.0099 0.0099
s.e. [.023] [.0158] [.0071] [.006] [.0062] [.0084]

β0 0.0178 0.0092 -0.0116 -0.0045 0.0048 -.0144**
s.e. [.0118] [.0078] [.0082] [.0057] [.0059] [.0067]

β1 .0835*** .0361** -0.0055 -.0153** 0.0056 -.029**
s.e. [.0235] [.016] [.009] [.0073] [.0049] [.0137]

Controls No No No No No No
Obs. 2,727,356 2,727,356 2,727,356 2,727,356 2,727,356 2,727,356

Services

(1) (2) (3) (4) (5) (6)
log(va/L) log(TFP )GNR log(L) log(w) Entry Exit

β−1 -0.03 -0.0081 -0.004 -0.0069 0.0082 0.003
s.e. [.0258] [.0097] [.0104] [.0064] [.0089] [.0086]

β0 -0.0015 0.0038 -.017** -0.0013 0.021 -.0203**
s.e. [.021] [.0045] [.0069] [.0058] [.0141] [.0096]

β1 .0533*** .0188** -0.0019 -.0108* .0217*** -.0388***
s.e. [.0202] [.0095] [.0123] [.0058] [.0075] [.0143]

Controls No No No No No No
Obs. 3,511,463 3,511,463 3,511,463 3,511,463 3,511,463 3,511,463

Notes: Standard errors are in brackets. ∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1.
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Table 20: Regressions by sector, Construction plans 2013-2018

Manufacturing

(1) (2) (3) (4) (5)
log(va/L) log(TFP )GNR log(L) log(w) Entry

β−1 -0.0505 -0.0127 0.0344 0.0036 0.0114
s.e. [.0478] [.0158] [.0219] [.0068] [.0085]

β0 0.0351 0.0092 0.0214 .0199** -0.0009
s.e. [.048] [.0156] [.0319] [.0079] [.0109]

β1 -.1506** -.0628*** 0.0378 -0.0128 0.029
s.e. [.0587] [.024] [.0263] [.012] [.0241]

Controls No No No No No
Obs. 645,540 645,540 645,540 645,540 645,540

Commerce

(1) (2) (3) (4) (5)
log(va/L) log(TFP )GNR log(L) log(w) Entry

β−1 -.0562** -.0182* -0.0084 0.0048 0.009
s.e. [.0222] [.0102] [.0056] [.0035] [.0057]

β0 .0362** .0173* .0198* .0081** -0.0018
s.e. [.0158] [.01] [.0102] [.0036] [.0076]

β1 -.0438* -0.0107 .0343*** 0.0088 0.0171
s.e. [.0247] [.0186] [.0088] [.0131] [.0105]

Controls No No No No No
Obs. 2,521,552 2,521,552 2,521,552 2,521,552 2,521,552

Services

(1) (2) (3) (4) (5)
log(va/L) log(TFP )GNR log(L) log(w) Entry

β−1 -.0652** -.0182** -0.0067 0.002 0.0074
s.e. [.0298] [.0084] [.0103] [.0056] [.0065]

β0 .078** .0207** 0.0111 .0098* 0.0049
s.e. [.0312] [.0099] [.007] [.0059] [.0082]

β1 .0811*** .0209*** .0337*** 0.0231 .0287**
s.e. [.0233] [.0073] [.0129] [.0145] [.0135]

Controls No No No No No
Obs. 3,144,586 3,144,586 3,144,586 3,144,586 3,144,586

Notes: Standard errors are in brackets. ∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1.
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Regressions with controls

Table 21: Regressions with controls. Construction plans 2007-2012

(1) (2) (3) (4) (5) (6)
log(va/L) log(TFP) (GNR) log(L) log(w) Entry Exit

β−1 -0.025 -0.0097 -0.0003 -0.0054 0.0097 0.0074
s.e. [.0209] [.0102] [.0078] [.0044] [.0069] [.0071]

β0 0.0095 .009** -.0143*** -0.0007 0.0141 -.0173**
s.e. [.0125] [.0044] [.0054] [.0038] [.0102] [.0072]

β1 .0748*** .0295*** -0.0021 -.0106** .0152*** -.0329**
s.e. [.0216] [.011] [.0069] [.0045] [.005] [.0131]

Controls Yes Yes Yes Yes Yes Yes
Obs. 7,060,649 7,060,649 7,060,649 7,060,649 7,060,649 7,060,649

Notes: Standard errors are in brackets. ∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1. Sample includes all firms from
1998 to 2018. Excludes firms with value added or capital smaller than zero. Controls include 3-digit

sector.

Table 22: Regressions with controls. Construction plans 2013-2018

(1) (2) (3) (4) (5)
log(va/L) log(TFP) (GNR) log(L) log(w) Entry

β−1 -.0629*** -.0193*** -0.0062 0.0037 0.0099
s.e. [.0239] [.0072] [.0078] [.0046] [.0066]

β0 .0494** .0156** .0134* .0089** 0.0018
s.e. [.0205] [.0069] [.0079] [.0038] [.0076]

β1 -0.0033 -0.005 .0258*** .0129* .025**
s.e. [.0219] [.0095] [.0094] [.0069] [.0125]

Controls Yes Yes Yes Yes Yes
Obs. 6,375,668 6,375,668 6,375,668 6,375,668 6,375,668

Notes: Standard errors are in brackets. ∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1. Sample includes all firms from
1998 to 2018. Excludes firms with value added or capital smaller than zero. Controls include 3-digit

sector.
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Regressions by buffer size

Table 23: Buffer = 10km, Construction plans 2007-2012

(1) (2) (3) (4) (5) (6)
log(va/L) log(TFP) (GNR) log(L) log(w) Entry Exit

β−1 -.0414* -0.0177 -0.0059 -0.0082 .0118* 0.0003
s.e. [.0217] [.0123] [.008] [.0051] [.0063] [.0072]

β0 0.0059 0.0092 -0.0119 -0.0014 0.0148 -.0138*
s.e. [.0209] [.0077] [.0074] [.0053] [.0092] [.0079]

β1 .0598*** .0152* -0.0059 -.0132** .0191*** -.0334***
s.e. [.0211] [.0088] [.0095] [.0053] [.0043] [.0128]

Controls No No No No No No
Obs. 7,280,866 7,280,866 7,280,866 7,280,866 7,280,866 7,280,866

Notes: Standard errors are in brackets. ∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1.

Table 24: Buffer = 10km, Construction plans 2013-2018

(1) (2) (3) (4) (5)
log(va/L) log(TFP) (GNR) log(L) log(w) Entry

β−1 -.065** -0.0078 -0.004 0.0024 0.0078
s.e. [.0265] [.0076] [.0074] [.0049] [.0054]

β0 .0564** .0184*** .0154* .0108** 0.0017
s.e. [.0221] [.0071] [.0089] [.0048] [.0077]

β1 0.0116 0.0133 .0372*** .0148** .0277**
s.e. [.0241] [.0105] [.0101] [.0062] [.0119]

Controls No No No No No
Obs. 6,526,519 6,526,519 6,526,519 6,526,519 6,526,519

Notes: Standard errors are in brackets. ∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1.

Table 25: Buffer = 15km, Construction plans 2007-2012

(1) (2) (3) (4) (5) (6)
log(va/L) log(TFP) (GNR) log(L) log(w) Entry Exit

β−1 -0.0351 -0.0143 -0.004 -0.0075 .0111* 0.0038
s.e. [.0217] [.012] [.0076] [.0047] [.0061] [.0072]

β0 0.0013 0.0083 -0.0109 -0.0007 .0161* -0.0117
s.e. [.0191] [.007] [.0077] [.0051] [.0088] [.0076]

β1 .0522** 0.0138 -0.002 -.0126** .0216*** -.0284**
s.e. [.0211] [.0084] [.0098] [.005] [.0045] [.0132]

Controls No No No No No No
Obs. 7,665,879 7,665,879 7,665,879 7,665,879 7,665,879 7,665,879

Notes: Standard errors are in brackets. ∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1.
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Table 26: Buffer = 15km, Construction plans 2013-2018

(1) (2) (3) (4) (5)
log(va/L) log(TFP) (GNR) log(L) log(w) Entry

β−1 -.0718*** -0.0089 -0.0042 0.0036 0.0076
s.e. [.0255] [.0075] [.0076] [.0048] [.0053]

β0 .0611*** .0183*** .015* .0096** 0.0023
s.e. [.0217] [.007] [.0084] [.0047] [.0075]

β1 0.0137 0.0131 .0361*** .0147** .029**
s.e. [.0238] [.0102] [.0098] [.0061] [.0117]

Controls No No No No No
Obs. 6,723,947 6,723,947 6,723,947 6,723,947 6,723,947

Notes: Standard errors are in brackets. ∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1.

Evidence on firm mobility, 2013-2018

In this section we show a novel margin of firm dynamics that can be affected by the de-
velopment of the highways network: the geographical location of firms within cities.
First, we show that firm mobility is present in the data by exploiting a novel section in
the Economic Census 2018 where establishments are asked if they had a different lo-
cation in the previous wave (2013), and then report the main reason why they moved.
And second, by regressing the mobility decision and reasons on execution of construc-
tion plans.

Firm mobility in the data. The 2018 census included two new questions regarding
firm mobility. First, the census asks if the firm changed address between 2013 and
2018. If the answer is yes, the census asks an additional question on the reason why
it moved to a different address. The reasons are codified in 6 categories: low busi-
ness growth, increase in facility’s rental prices, to move closer to clients and suppliers,
public insecurity, tax-related reasons and, finally, other reasons.

Not all firms answered the firm mobility questions. The 2018 census covers 4,737,931
firms; among them, 1,832,685 answered the mobility questions, which is 39% of the
total. According to INEGI’s officials, small and medium firms are over-represented
among the respondent firms. Considering only the respondents, 4.28% of firms changed
address between 2013 and 2018, which means that the census documents 78,527 movers.
By extrapolating this percentage to the full census, the number of movers could be
around 203,011 firms. However, this number could be biased if non-respondents have
a different moving behavior.

Among the 78,527 movers, 12.6% are from the manufacturing sector, 32.6% from com-
merce, and 54.8% from services. In the population of firms, 12.3% are in the manufac-
turing sector, 47.6% in commerce, and 40.1% in services. If moving to a different loca-
tion was random, we should expect these percentages to be similar. However, there is
a large disparity in the share of movers from the services sector and the share they rep-
resent in the population. This suggests that service providers are more likely to move
to another location. A possible explanation could be that they face lower moving costs
or expect higher returns from moving than firms in commerce and manufacturing.
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Firms might have many reasons to move. The Economic Census asks what is the
main one and codifies the answers. The distribution of these answers is the following.
10.43% declare low business growth, 31.8% increase in facility’s rental prices, 13.8% to
move closer to clients and suppliers, 3.6% public insecurity, 0.8% tax-related reasons
and, finally, 39.5% other reasons.

The effects of better highways on firm mobility. We now provide evidence on the
effects of highways on the firm mobility decision. To do this, we estimate the following
probit model:

P (new location in 2018 = yes)ij = Φ[α + βXij + δDj + εij] (47)

In this model, i denotes the firm and j the location. Xij denotes a vector of controls,
and Dj takes the value of 1 if construction plans were executed between 2013 and
2018 and zero otherwise. The parameter of interest is δ, which captures whether better
highways affect the probability of moving to a different location.

Table 27 shows the results by sector and with and without controls for population den-
sity and number of firms and workers at baseline, to control for the fact that mobility
might defer depending on how crowded a location is. Columns (1) and (2) show that
execution of contraction plans has a positive effect on the probability of an firm to
have moved to a different location between census waves of 2013 and 2018. Columns
(3) and (4) show that manufacturing firm mobility doesn’t seem to be connected to
changes in the highways network. Finally, firms in the services sector seem to be af-
fected by highways when they make mobility decisions but these effects are not robust
to baseline demographic characteristics of the location.

Table 27: Porbit model. Outcome: probability of moving
Sector Commerce Manufacturing Services

(1) (2) (3) (4) (5) (6)
Treatment .1269** .0731** 0.0907 0.0699 .0992** 0.0595

se -0.0484 -0.0349 -0.0552 -0.0552 -0.0497 -0.04

N 475,370 472,852 124,885 124,464 476,515 476,031
Controls No Yes No Yes No Yes

Notes: Standard errors are in brackets. ∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1.

Similarly, to determine if highways affect the reasons why firms move, we run the
following probit model:

P (main reason r = yes)ij = Φ[α + βXij + δDj + εij] (48)

Where r is the main reason why the firm changed location and can be: low business
growth, increase in facility’s rental prices, to move closer to clients and suppliers, pub-
lic insecurity, tax-related reasons and, finally, other reasons. Table 28 shows the results
by sector and adding controls for baseline demographic characteristics such as pop-
ulation density, number of firms and workers. Whereas firms can move for diverse
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reasons, when highways are improved, the reported reason that is positively distorted
is proximity to clients and suppliers, except for the manufacturing sector.

Table 28: Porbit model. Outcome: probability of moving
Commerce

(1) (2) (3) (4) (5) (6)
Reason Growth Rents Proximity Insecurity Taxes Other

Treatment -0.0045 -0.0693 .1113** 0.077 0.1018 -0.0097
se [.0376] [.0632] [.0434] [.0648] [.0705] [.0543]

N 14,672 14,672 14,672 14,672 14,672 14,672
Controls Yes Yes Yes Yes Yes Yes

Manufacturing
(1) (2) (3) (4) (5) (6)

Reason Growth Rents Proximity Insecurity Taxes Other
Treatment -0.0023 -0.006 0.0392 0.0226 .3036** -0.021

se [.0498] [.0714] [.0558] [.0704] [.112] [.072]

N 5,802 5,802 5,802 5,802 5,802 5,802
Controls Yes Yes Yes Yes Yes Yes

Services
(1) (2) (3) (4) (5) (6)

Reason Growth Rents Proximity Insecurity Taxes Other
Treatment 0.0007 -0.0771 .1241*** 0.0441 0.086 -0.0073

se [.0271] [.0489] [.028] [.0439] [.0685] [.0444]

N 25,220 25,220 25,220 25,220 25,220 25,220
Controls Yes Yes Yes Yes Yes Yes

Notes: Standard errors are in brackets. ∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1.

The impact of new highways on intra-city relocation choices carries an implication for
firm dynamics. When location changes are not tracked in the data, the rate of firm
exit can be inflated, possibly leading to an underestimation of the reduction in exit
observed produced by our treatment. Simultaneously, not tracking location changes
could lead to an overestimation of firm entry which could potentially result in an over-
estimation of firm entry rates in treated locations. Lastly, considering that relocations
are often motivated by a desire to be closer to clients and suppliers, it is reasonable to
expect that revenue productivity tends to be higher at the new locations.
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C Appendix: Model

Figure 18: Residual wage by location

(a) Wage by location, data and residual (b) Residual wage/data wage by location

Notes: Figure shows estimation for 2018. Marker size in panel (a) denotes the number of firms; the
largest is Mexico City. β1, β2, β3 significant at the 95%.
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Figure 19: Local labor productivity, model vs. microdata

(a) 1998 (b) 2003

(c) 2008 (d) 2013

(e) 2018

Notes: Gains stemming from expanding the highways network from 1998 to 2018. Gains are at the
location level.
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Quantitative results

Figure 20: Location gains from the 1998-2018 highways network

(a) Price index reductions (%) (b) Market access gains (%)

(c) Employment gains (%) (d) Real revenue gains (%)

(e) Productivity gains (%) (f) Firms gains (%)

Notes: Gains stemming from expanding the highways network from 1998 to 2018. Gains are at the
location level.
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C.1 Agglomeration and congestion externalities

Agglomeration externalities. Firm level productivity is separable in two parts as:

ψi,t(n) ≡ zi,t · si(n) (49)

Now zi,t is not fully exogenous but depends positively on the local population to cap-
ture agglomeration externalities stemming from, for example, a larger pool of ideas
that make all workers more productive in the location.

zi,t = z̄i,tL
α
i,tz (50)

Where z̄i,t is the exogenous part and αz ≥ 0 governs the degree of agglomeration
externalities. The rest of the model remains the same. The existence of the spatial
equilibrium will now depend on αz. Allen and Arkolakis (2014) provide the existence
conditions.

Congestion externalities. Utility is still given by:

Ui,t ≡ Ci,t · ui,t (51)

But now, local amenities suffer from congestion externalities. The larger the amount
of people living in a location, the larger the degradation and congestion of amenities.
We can model it as:

ui,t = z̄i,tL
α
i,tu (52)

Where ūi,t is the exogenous part and αu ≥ 0 governs the degree of congestion exter-
nalities. Adding a congestion force reduces the strong negative relationship between
local wages and amenities. Allen and Arkolakis (2014) provide the existence condi-
tions of the equilibrium for combinations of parameters governing agglomeration and
congestion externalities.

C.2 Firm sorting

We model firm sorting following Gaubert (2018). Firms choose their location only
at entry since, in the data, most firm migration happens within locations rather than
across them.29 Productivity ψi(n) of firm n when choosing location i is:

log(ψi,t(n)) = log(zi,t) + α log(Li,t) + log(si(n)) · (1 + log(Li,t))
η + εi,t(n) (53)

Here, zi,t captures location-specific productivity shocks, α governs the intensity of
local spillovers, η determines the degree of complementarity between idiosyncratic
productivity si(n) and city size, and finally, εi,t represents a firm-level taste shock for
location i.

Equation 53 fully determines the sorting of firms. Local spillovers rationalize why
more firms move to big cities, the complementarity term explains why big cities at-
tract the most productive firms, and the taste shock accounts for the imperfect sorting

29Alternatively, this empirical observation can be replicated by allowing on-the-life-cycle migration
coupled with high moving costs.
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observed in the data.

We assume that the taste shock follows a Fréchet distribution with shape parameter ξ.
The share firms that will choose location i is:

Mi,t

Mt

=
V ξ
i,t∑

j∈J V
ξ
j,t

(54)
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